簡易檢索 / 詳目顯示

研究生: 莊翔智
Siang-Jhih Jhuang
論文名稱: 電鍍法合成五氧化三釩正極材料及其應用於超級電容器之研究
Electrochemically deposited vanadium oxide-based positive electrode for surpercapacitor application
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 148
中文關鍵詞: 超級電容器薄膜五氧化三釩氫氧化鎳膠態超級電容器
外文關鍵詞: Supercapacitor, Thin film, Vanadium oxide, Nickel hydroxide, Colloidal supercapacitor
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著工業發展,電力短缺的狀況下,能源的開發成為全球首要的目標之一,其中又以儲能裝置最受到矚目,目前主要的儲能裝置為鋰電池、超級電容、燃料電池等,但鋰電池以及燃料電池有造價昂貴,原料難以取得,放電功率小等缺點,而超級電容器則能應付上述條件,使其成為目前主要的研究目標。在此實驗中,首先以電鍍法開發出高電化學活性之材料,後續預處理集流體賦予高比表面積進一步提高反應點位,並利用SEM、EDX、XRD、RAMAN、TEM、XPS進行物性分析,再利用CV、GCD、EIS、Cycle testing探討材料的電化學性能。
第一部分使用釩基前驅物VCl3與其他金屬前驅物(KCl2、LiCl、NiCl2),形成金屬電鍍液,並使用造價便宜的鎳發泡材做為集流體,利用電鍍法沉積出釩基氧化物薄膜於鎳發泡材上,經由電化學檢測,確定最合適的電鍍液,再經由最適化實驗參數的調整(電鍍液比例、電鍍電流以及電鍍時間)後得到最佳化樣品,並將其命名為VN1B5。後續經由XRD晶體繞射分析確定薄膜晶體結構為五氧化三釩V3O5,而鎳原子以置換型摻雜的方式存在於V3O5晶體內部,在熱力學中得知V3O5並不屬於熱平衡相,即所謂的缺陷型結構,其中釩的價數為3+與4+,因為具有點缺陷以及多價態轉化等特性,使得V3O5與電解質中的離子有較高的電化學活性,V3O5薄膜在電流密度為1 A/g時,比電容值為5689 F/g。
第二部分使用硝酸水浴對鎳發泡材做預處理,使鎳發泡材表面形成氫氧化鎳Ni(OH)2,並將第一部分開發的V3O5薄膜沉積於氫氧化鎳Ni(OH)2上,將最佳電鍍時間之樣品命名為Ni(OH)2/VN1B5。氫氧化鎳具有奈米片狀的優秀結構,賦予V3O5薄膜大量的比表面積。在電化學特性方面,當電流密度為1 A/g時,雙層Ni(OH)2/VN1B5電極的比電容值為7500 F/g,能量密度為167 Wh/kg,功率密度為199 W/kg,經由10000次的充放電循環後,電容保持率為93%。
第三部分以PVA + KOH膠態電解液作為電解質,利用活性碳AC作為負極,Ni(OH)2/VN1B5作為正極,以非對稱性AC//Ni(OH)2/VN1B5以及對稱性Ni(OH)2/VN1B5//Ni(OH)2/VN1B5的方式組裝成膠態超級電容器,在電流密度為1 A/g時,比電容分別為390 F/g、846 F/g,能量密度分別為286 Wh/kg、170 Wh/kg,功率密度分別為1150 W/kg、602 W/kg,經由10000次充放電循環後,電容保持率分別為97%、95%。


In recent years, with the development of industry and the shortage of electricity, the development of energy has become one of the primary goals in the world. Among them, energy storage devices have attracted the most attention. At present, the main energy storage devices are lithium batteries, supercapacitors, fuel cells. However, lithium batteries and fuel cells have the disadvantages of high cost, difficulty in obtaining raw materials, and low discharge power, while supercapacitors can cope with the above conditions, making it one of the main research goals at present. In this experiment, vanadium-based materials with high electrochemical activity were first developed using electroplating. To further improve the electrocatalyst, the pretreatment of Ni foam is to create Ni hydroxide with high specific surface area as a current collector was proceded after electrodeposition of vanadium oxide. The bilayer coatings were evaluated with SEM, EDX, XRD, RAMAN, TEM, and XPS for physical property analysis, and then use CV, GCD, EIS, Cycle testing to evaluate electrochemical properties of materials.
The first part uses vanadium precursor of VCl3 and other metal precursors (KCl2, LiCl, NiCl2) to form a metal electroplating solution, and uses a cheap nickel foam material as the current collector, and uses the electroplating method to deposit a vanadium-based oxide film on the nickel foam material. Through electrochemical detection, the most suitable electroplating solution was determined, and then the optimized sample composition was obtained after the optimized experimental parameters in electoplating solution ratio, electroplating current, and electroplating time. The sample prepared at the optimal condition was given a symbol of VN1B5, which was determined to have the film crystal structure of vanadium oxide, V3O5, through XRD crystal diffraction analysis and have the nickel atoms substituted into V3O5 crystal lattice by doping. It is noted that V3O5 does not belong to the thermal equilibrium phase, but a defect-type structure containing the valence charges of vanadium at 3+ and 4+. Due to the characteristics of point defects and multi-valence conversion, V3O5 has high electrochemical activity with the ions in the electrolyte. When the current density of V3O5 film is set at 1 A/g, the specific capacitance value of 5689 F/g was achieved.
The second part involves firstly the utilization of a hot nitric acid water bath to pretreat the nickel foam for growing nickel hydroxide Ni(OH)2 on the surface of the nickel foam. Secondly, the deposition of V3O5 film on the nickel hydroxide Ni(OH)2 to form a bilayer coating as an electrocataltytic layer. The sample of the bilayer coating prepared at the best condition was given a symbol of Ni(OH)2/VN1B5. Nickel hydroxide with a nano-sheet structure is used for the purpose of increasing the specific surface area of the top V3O5 layer. In terms of electrochemical properties, when the current density is set at 1 A/g, the Ni(OH)2/VN1B5 electrode achieved specific capacitance of 7500 F/g, the energy density of 167 Wh/kg, and the power density of 199 W/kg. After 10,000 charge-discharge cycles, the capacitance retention rate is 93%.
In the third part, PVA+KOH colloidal electrolyte is used as electrolyte, activated carbon AC as negative electrode, Ni(OH)2/VN1B5 as positive electrode to form the solid-state asymmetric AC//Ni(OH)2/VN1B5 and symmetric Ni(OH)2/VN1B5//Ni(OH)2/VN1B5 full cells. When the current density is set at 1 A/g, the asymmetric and symmetric full cells performed the specific capacitances of 390 F/g and 846 F/g, respectively, the energy densities of 286 Wh/kg and 170 Wh/kg, and the power densities of 1149 W/kg and 602 W/g. After 10,000 charge-discharge cycles, the capacitance retention rates are respectively 97% and 95%.

第1章 緒論 1 1.1 前言 1 1.2 研究動機 3 第2章 原理與文獻回顧 4 2.1 超級電容器分類與機制 4 2.1.1 電雙層電容器(Electrical Double Layer Capacitor, EDLC) 4 2.1.2 擬電容(Pseudo-capacitor) 4 2.2 超級電容器性能指標 6 2.2.1 電容定義 6 2.2.2 循環伏安法(Cyclic Voltammetry, CV): 6 2.2.3 恆電流充/放電(Galvanostatic Charge/ Discharge, GCD) 7 2.2.4 交流阻抗(Electrochemical Impedance Spectroscopy, EIS) 8 2.3 文獻回顧 10 2.3.1 超級電容材料的挑選 10 2.3.2 超級電容材料的合成 12 2.3.3 PEDOT-V2O5-VA-CNTs/GF複合材料電極介紹 15 2.3.4 VO2/Graphene@NiS2陽極介紹 18 2.3.5 3D Network V2O5可穿戴式膠態電容介紹 21 2.3.6 氫氧化鎳介紹 24 第3章 實驗方法與步驟 27 3.1 實驗材料與規格 27 3.2 實驗設備 28 3.2.1 電子天平 28 3.2.2 加熱磁石攪拌器 28 3.2.3 烘箱 28 3.2.4 超音波震盪機 28 3.2.5 均質機 28 3.2.6 恆電位儀 28 3.3 實驗步驟 29 3.3.1 清洗發泡鎳集流體 29 3.3.2 製備摻雜型氧化釩薄膜 29 3.3.3 最佳化實驗參數調整 29 3.3.4 預處理發泡鎳集流體 Ni(OH)2 31 3.3.5 製備Ni(OH)2/VN1Bz 31 3.3.6 製備活性碳負極 31 3.3.7 膠態超級電容器 32 3.4 分析儀器介紹與原理 33 3.4.1 X光繞射儀 (X-Ray Diffractometer, XRD) 33 3.4.2 場發式掃描電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 33 3.4.3 X光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 34 3.4.4 拉曼光譜儀 (Raman Spectrometer) 34 3.4.5 穿透式電子顯微鏡 (Transmission Electron microscopy, TEM) 34 第4章 結果與討論 35 4.1 不同成分電鍍液對所製備釩基薄膜之影響 35 4.1.1 不同成分電鍍液所製備釩基薄膜之CV分析 35 4.1.2 不同成分電鍍液所製備釩基薄膜之GCD分析 37 4.2 不同釩鎳比例電鍍液對所製備VNx薄膜之影響 39 4.2.1 不同釩鎳比例電鍍液所製備VNx薄膜之XRD分析 39 4.2.2 不同釩鎳比例電鍍液所製備VNx薄膜之CV分析 41 4.2.3 不同釩鎳比例電鍍液所製備VNx薄膜之GCD分析 42 4.2.4 不同釩鎳比例電鍍液所製備VNx薄膜之EIS分析 44 4.3 不同電鍍電流對所製備VN1y薄膜之影響 47 4.3.1 不同電鍍電流所製備VN1y薄膜之CV分析 47 4.3.2 不同電鍍電流所製備VN1y薄膜之GCD分析 49 4.3.3 不同電鍍電流所製備VN1y薄膜之EIS分析 51 4.4 不同電鍍時間對所製備VN1Bz薄膜之影響 53 4.4.1 不同電鍍時間所製備VN1Bz薄膜之SEM分析 53 4.4.2 不同電鍍時間所製備VN1Bz薄膜之CV分析 55 4.4.3 不同電鍍時間所製備VN1Bz薄膜之GCD分析 56 4.4.4 不同電鍍時間所製備VN1Bz薄膜之EIS分析 58 4.5 最佳化製程參數所得之VN1B5樣品其分析與探討 60 4.5.1 最佳化製程參數所得VN1B5樣品之SEM分析 60 4.5.2 最佳化製程參數所得VN1B5樣品之XPS分析 63 4.5.3 最佳化製程參數所得VN1B5樣品之TEM分析 66 4.5.4 最佳化製程參數所得VN1B5樣品於不同掃描速率之CV分析 69 4.5.5 最佳化製程參數所得VN1B5樣品於不同電流下之GCD分析 73 4.5.6 最佳化製程參數所得VN1B5樣品之穩定性測試 75 4.6 不同電鍍時間對所製備Ni(OH)2/VN1Bz電極之影響 79 4.6.1 不同電鍍時間所製備Ni(OH)2/VN1Bz電極之SEM分析 79 4.6.2 不同電鍍時間所製備Ni(OH)2/VN1Bz電極之CV分析 81 4.6.3 不同電鍍時間所製備Ni(OH)2/VN1Bz電極之GCD分析 83 4.6.4 不同電鍍時間所製備Ni(OH)2/VN1Bz電極之EIS分析 86 4.7 最佳化製程參數所得之Ni(OH)2/VN1B5電極其分析與探討 88 4.7.1 最佳化製程參數所得之Ni(OH)2/VN1B5電極之SEM分析 88 4.7.2 最佳化製程參數所得之Ni(OH)2/VN1B5電極之XRD分析 91 4.7.3 最佳化製程參數所得之Ni(OH)2/VN1B5電極之XPS分析 93 4.7.4 最佳化製程參數所得之Ni(OH)2/VN1B5電極之RAMAN分析 96 4.7.5 最佳化製程參數所得之Ni(OH)2/VN1B5電極之TEM分析 98 4.7.6 最佳化製程參數所得之Ni(OH)2/VN1B5電極於不同掃描速率下之CV分析….. 99 4.7.7 最佳化製程參數所得之Ni(OH)2/VN1B5電極於不同電流密度下之GCD分析 103 4.7.8 最佳化製程參數所得之Ni(OH)2/VN1B5電極之循環測試 106 4.8 膠態超級電容器之性能測試 110 4.8.1 膠態超級電容器之CV分析 110 4.8.2 膠態超級電容器之GCD分析 112 4.8.3 膠態超級電容器之EIS分析 114 4.8.4 膠態超級電容器之循環測試 115 4.8.5 膠態超級電容放電與開路電壓測試 117 第5章 結論 120 第6章 參考文獻 123

[1] Q. Zhang, X. Xu, S. Chen, G. B. Bodedla, M. Sun, Q. Hu, Q. Peng, B. Huang, H. Ke, F. Liu, T. P. Russell, and X.Zhu, "Phenylene-bridged perylenediimide- porphyrin acceptors for non-fullerene organic solar cells," Sustainable Energy & Fuels, 2 (2018) 2616-2624.
[2] P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, A.Cao, D.Wu, Core-double-shell, carbon nanotube@polypyrrole@ MnO2 sponge as freestanding, compressible supercapacitor electrode," ACS Applied Materials Interfaces, 6 (2014) 5228-5234.
[3] S. Yadav and A. Sharma, "Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials," Journal of Energy Storage, 44 (2021) 103295.
[4] T. N. Phan, M. K. Gong, R. Thangavel, Y. S. Lee, and C. H. Ko, "Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures," Journal of Alloys and Compounds, 780 (2019) 90-97.
[5] T. S. Le, T. K. Truong, V. N. Huynh, J. Bae, and D. Suh, "Synergetic design of enlarged surface area and pseudo-capacitance for fiber-shaped supercapacitor yarn," Nano Energy, 67 (2020) 104198.
[6] X. L. Zhou, T. S. Zhao, Y. K. Zeng, L. An, and L. Wei, "A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries," Journal of Power Sources, 329 (2016) 247-254.
[7] Y. Jia, L. Zhou, and J. Shao, "Electrochemical performance of flexible graphene-based fibers as electrodes for wearable supercapacitors," Synthetic Metals, 246 (2018) 108-114.
[8] Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin, and K. Cai, "Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material," Electrochimica Acta, 278 (2018) 114-123.
[9] X. Fan, W. Chen, S. Pang, W. Lu, Y. Zhao, Z. Liu, and D. Fang, "Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials," Chemical Physics Letters, 689 (2017) 162-168.
[10] Y. Liu, S. Wen, and W. Shi, "Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors," Materials Letters, 214 (2018) 194-197.
[11] B. Saravanakumar, K. K. Purushothaman, and G. Muralidharan, "Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors," Materials Chemistry and Physics, 170 (2016) 266-275.
[12] P. Asen, S. Shahrokhian, and A. I. Zad, "Iron‑vanadium oxysulfide nanostructures as novel electrode materials for supercapacitor applications," Journal of Electroanalytical Chemistry, 818 (2018) 157-167.
[13] H. Jiang, X. Cai, Y. Qian, C. Zhang, L. Zhou, W. Liu, B. Li, L. Lai, and W. Huang, "V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors," Journal of Materials Chemistry A, 5 (2017) 23727-23736.
[14] H.-C. Chen, Y.-C. Lin, Y.-L. Chen, and C.-J. Chen, "Facile Fabrication of Three-Dimensional Hierarchical Nanoarchitectures of VO2/Graphene@NiS2 Hybrid Aerogel for High-Performance All-Solid-State Asymmetric Supercapacitors with Ultrahigh Energy Density," ACS Applied Energy Materials, 2 (2018) 459-467.
[15] M. J. Deng, L. H. Yeh, Y. H. Lin, J. M. Chen, and T. H. Chou, "3D Network V2O5 Electrodes in a Gel Electrolyte for High-Voltage Wearable Symmetric Pseudocapacitors," ACS Applied Materials Interfaces, 11 (2019) 29838-29848.
[16] J. Cao, Z. Zhang, H. Li, R. Zhu, S. Li, L. Ma, K. Zhou, Q. Wei, and F. Luo, "Facile preparation of nickel hydroxide nanoplates on nickel foam for high performance hydrogen generation," Sustainable Energy & Fuels, 4 (2020) 5031-5035.
[17] H. A. Foner and N. Adan, "The Characterization of Papers by X-Ray Diffraction (XRD): Measurement of Cellulose Crystallinity and Determination of Mineral Composition," Journal of the Forensic Science Society, 23 (1983) 313-321.
[18] A. T. Vicente, A. Araújo, D. Gaspar, L. Santos, C. Marques, J. Mendes, L. Pereira, E. Fortunato, and R. Martins, "Optoelectronics and Bio Devices on Paper Powered by Solar Cells," in Nanostructured Solar Cells, (2017) Chapter 3.
[19] E. Korin, N. Froumin, and S. Cohen, "Surface analysis of nanocomplexes by x-ray photoelectron spectroscopy (XPS)," ACS Biomaterials Science & Engineering, 3 (2017) 882-889.
[20] G. S. Bumbrah and R. M. Sharma, "Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse," Egyptian Journal of Forensic Sciences, 6 (2016) 209-215.
[21] J. T. van Omme, H. Wu, H. Sun, A. F. Beker, M. Lemang, R. G. Spruit, S. P. Maddala, A. Rakowski, H. Friedrich, J. P. Patterson, and H. H. P. Garza, "Liquid phase transmission electron microscopy with flow and temperature control," Journal of Materials Chemistry C, 8 (2020) 10781-10790.
[22] Y. Jiang, C. Zhang, W. Zhang, W. Shi, and Q. Liu, "Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles," Journal of Industrial Engineering and Management, 6 (2013) 686-697.
[23] M. R. Palacin, "Recent advances in rechargeable battery materials: A chemist's perspective," Chemical Society Review, 38 (2009) 2565-2575.
[24] N. S. Resende, C. A. Perez, J. G. Eon, and M. Schmal, "The effect of coating TiO2 on the CO oxidation of the Pt/γ-alumina catalysts," Catalysis Letters, 141 (2011) 1685-1692.
[25] D. Chen, H. Tan, X. Rui, ,Q. Zhang, Y. Feng, H. Geng, C. Li, S. Huang, and Y. Yu, "Oxyvanite V3O5: A new intercalation‐type anode for lithium‐ion battery," InfoMat, 1 (2019) 251-259.
[26] J. Wang, J. Polleux, J. Lim, and B. Dunn, "Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles," The Journal of Physical Chemistry C, 111 (2007) 14925-14931.
[27] M. Wahid, D. Puthusseri, D. Phase, and S. Ogale, "Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment," Energy & Fuels, 28 (2014) 4233-4240.
[28] Š. Trafela, J. Zavašnik, S. Šturm, and K. Ž. Rožman, "Formation of a Ni(OH)2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media," Electrochimica Acta, 309 (2019) 346-353.
[29] Q. Wang and D. O'Hare, "Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets," Chem Rev, 112 (2012) 4124-4155.
[30] M. S. Vidhya, G. Ravi, R. Yuvakkumar, D. Velauthapillai, M. Thambidurai, C. Dang, and B. Saravanakumar, "Nickel–cobalt hydroxide: a positive electrode for supercapacitor applications," RSC Advances, 10 (2020) 19410-19418.
[31] P. Shvets, O. Dikaya, K. Maksimova, and A. Goikhman, "A review of Raman spectroscopy of vanadium oxides," Journal of Raman Spectroscopy, 50 (2019) 1226-1244.
[32] Z. Wu, D. Khalafallah, C. Teng, X. Wang, J. C. Zou, M. Zhi, and Z. Hong, "Vanadium doped hierarchical porous nickel-cobalt layered double hydroxides nanosheet arrays for high-performance supercapacitor," Journal of Alloys and Compounds, 838 (2020) 155604.
[33] Y. Si, G. Liu, C. Deng, W. Liu, H. Li, and L. Tang, "Facile synthesis and electrochemical properties of amorphous FeVO4 as cathode materials for lithium secondary batteries," Journal of Electroanalytical Chemistry, 787 (2017) 19-23.
[34] D. Velpula, S. Konda, S. Vasukula, and S. C. Chidurala, "Microwave radiated comparative growths of vanadium pentoxide nanostructures by green and chemical routes for energy storage applications," Materials Today: Proceedings, 47 (2021) 1760-1766.
[35] M. R. Pallavolu, J. Nallapureddy, R. R. Nallapureddy, G. Neelima, A. K. Yedluri, T. K. Mandal, B. Pejjai, and S. W. Joo, "Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors," Journal of Alloys and Compounds, 886 (2021) 161234.
[36] Y. Chen, P. Lian, J. Feng, Y. Liu, L. Wang, J. Liu, and X. Shi, "Tailoring defective vanadium pentoxide/reduced graphene oxide electrodes for all-vanadium-oxide asymmetric supercapacitors," Chemical Engineering Journal, 429 (2022) 132274.
[37] B. Pandit, S. R. Rondiya, R. W. Cross, N. Y. Dzade, and B. R. Sankapal, "Vanadium telluride nanoparticles on MWCNTs prepared by successive ionic layer adsorption and reaction for solid-state supercapacitor," Chemical Engineering Journal, 429 (2022) 132505.
[38] P. Wang, Y. Zhang, H. Jiang, X. Dong, and C. Meng, "Ammonium vanadium oxide framework with stable NH4+ aqueous storage for flexible quasi-solid-state supercapacitor," Chemical Engineering Journal, 427 (2022) 131548.
[39] H. Liu, W. Zhu, D. Long, J. Zhu, and G. Pezzotti, "Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors," Applied Surface Science, 478 (2019) 383-392.
[40] W. Yang, J. Zeng, Z. Xue, T. Ma, J. Chen, N. Li, H. Zou and S. Chen "Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor," Ionics, 26 (2019) 961-970.
[41] M. R. Pallavolu, Y. Anil Kumar, R. R. Nallapureddy, H. R. Goli, A. Narayan Banerjee, and S. W. Joo, "In-situ design of porous vanadium nitride@carbon nanobelts: A promising material for high-performance asymmetric supercapacitors," Applied Surface Science, 575 (2022) 151734.
[42] M. Y. Zhang, J. Y. Miao, X. H. Yan, Y. H. Zhu, Y. L. Li, W. J. Zhang, W. Zhu, J. M. Pan, M. S. Javed, and S. Hussain, "Vanadium disulfide nanosheets loaded on carbon cloth as electrode for flexible quasi-solid-state asymmetric supercapacitors: Energy storage mechanism and electrochemical performance," Journal of Materials Chemistry C, 10 (2022) 640-648.
[43] J. Pan, S. Li, F. Li, W. Zhang, D. Guo, L. Zhang, D. Zhang, H. Pan, Y. Zhang, and Y. Ruan, "Design and construction of core-shell heterostructure of Ni-V layered double hydroxide composite electrode materials for high-performance hybrid supercapacitor and L-Tryptophan sensor," Journal of Alloys and Compounds, 890 (2022) 161781.
[44] E. Niknam, H. Naffakh-Moosavy, S. E. Moosavifard, and M. Ghahraman Afshar, "Amorphous V-doped Co3S4 yolk-shell hollow spheres derived from metal-organic framework for high-performance asymmetric supercapacitors," Journal of Alloys and Compounds, 895 (2022) 162720.

無法下載圖示 全文公開日期 2025/07/11 (校內網路)
全文公開日期 2025/07/11 (校外網路)
全文公開日期 2025/07/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE