簡易檢索 / 詳目顯示

研究生: 江秉鴻
Ping-Hung Chiang
論文名稱: 鉭膜之機械性質研究-楊氏係數、硬度與薄膜應力
Mechanical Properties of Tantalum thin Films - Young's Modulus, Hardness and Film Stress
指導教授: 鄭偉鈞
Wei-Chun Cheng
任盛源
Shien-Uang Jen
口試委員: 陳憬燕
Jiing-Yann Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 薄膜應力
外文關鍵詞: Tantalum, Thin Film, Stress
相關次數: 點閱:260下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用磁濺鍍方式將單層鉭(Tantalum)薄膜沉積於Corning 0211玻璃基板上。樣品製備完畢,隨後進行PSC應力分析儀分析試片曲率半徑,進而計算薄膜應力值;奈米壓痕試驗儀得到薄膜楊氏係數(Ef)及硬度(Hf);奈米級歐傑電子能譜儀來分析原子縱深分佈。最後,利用穿透式電子顯微鏡(TEM)觀察薄膜cross-section與plane-view原子影像。
實驗結果顯示,楊氏膜數與硬度由薄膜厚度增加之後數值分別提升10 GPa與3 GPa。量測之應力中包含本質應力與熱應力,在常溫下鍍膜與加溫鍍膜後扣除掉熱應力後的溫度對於本質應力的影響,加溫後的應力皆比常溫時的應力低,在此發現有應力鬆弛(stress relieve)的現象。在厚度100 nm時,薄膜已成長完整下,以本質應力為材料內主要應力的分佈。短軸除以長軸比值小於1顯示長軸與短軸為非等向性成長關係。奈米歐傑電子能譜儀可以分析出各個元素在試片中縱深分佈圖中可以看到試片前百分之一(約10 nm)的部分氧原子的含量很高,隨著深入至試片內部,鉭元素含量增加,氧元素含量下降。TEM觀察到深色部分為條狀成長後之柱狀結構,而柱與柱之間灰白色的區域判斷應為柱狀間之間隙為晶界位置造成氧的進入主要原因。當薄膜厚度為50 nm,氬氣分壓為1.5x10-2 torr時可達到本質應力接近為零,此為本實驗最理想之參數。


In this research, single layer Tantalum thin film deposited onto Corning 0211 glass substrate. In this way, it can enhance reflection of the laser light. Right after sample sputter Ta film, it undergoes to PSC stress analyzed instrument to measure the curvature of the sample. UMIS (Ultra Micro Indentation System) instrument measured the film’s Young’s modulus (Ef) and hardness (Hf). Auger electron nanoscope analyzed the depth profile of periodic elements. Finally, TEM was used to observe the film’s cross-section and plane-view of the atomic image.

The result showed Young’s modulus and hardness increase by film thickness increment. The total stress generates from zero stress to positive stress when the film increase. Total stress includes thermal stress and intrinsic stress, the stress after annealing was lower than the room temperature deposited. It showed the stress relieve besides room temperature sample. The intrinsic stress initially exhibited compression stress when the film below 50nm thick. Once the film grew to 100nm thick, the intrinsic stress were the main stress in the film. It showed anisotropy relationship between longitudinal and transverse axes in all Ta sample by calculation. From nano auger depth profile, it showed the oxygen percentage higher than other place in 1% from film surface. TEM showed that Ta were columnar growth, the cause of oxygen went inside to film is probably the Facing Target technique, which made the greater spacing between each columnar structure. When the film thickness reaches to 50 nm, Ar pressure controls to 1.5x10-2 torr, it can see the intrinsic stress nearly to zero point. That is the best condition the experiment had.

目 錄 第一章 前 言..............1 第二章 文獻回顧..............2 2.1 薄膜成長.............. 2 2.1.1 薄膜成長機制..............2 2.1.2 影響薄膜成長的因素..............4 2.2 薄膜應力..............5 2.2.1 薄膜應力分析.............. 5 2.2.2 內應力成因..............6 2.2.3 薄膜應力計算公式..............9 2.3 應力量測方法..............10 2.3.1 懸臂樑法..............10 2.3.2 牛頓環法..............11 2.3.3 X 光繞射法..............11 2.3.4 雷射光槓桿技術..............12 2.4 奈米結構的強化機制理論..............13 2.4.1 層與層間結構韌化..............13 2.4.2 奈米晶粒/非晶結構的強化機構..............14 2.4.3 基材效應與壓痕大小效應..............15 第三章 實驗步驟與方法..............23 3.1 實驗流程..............23 3.2 實驗設備..............23 3.2.1 高溫蒸鍍系統.............. 23 3.2.2 高真空磁濺鍍系統..............24 3.2.3 濺鍍原理..............24 3.2.4 本濺鍍系統與設備..............25 3.3 分析檢測設備..............25 3.3.1 奈米壓痕試驗儀簡介..............25 3.3.2 鑽石探針種類.............. 26 3.3.3 奈米壓痕試驗儀實驗原理..............27 3.3.4 奈米壓痕試驗儀架構..............29 3.3.5 薄膜應力量測儀..............29 3.3.6 歐傑電子能譜儀..............30 3.3.7 穿透式電子顯微鏡..............30 第四章 結果與討論..............43 4.1 膜厚對楊氏模數與硬度的影響..............43 4.2 厚度對量測應力的影響..............43 4.3 扣除熱應力後之本質應力的討論..............44 4.4 腔體加溫下熱應力與本質應力的探討..............44 4.5 基板長軸與短軸間等向性關係..............45 4.6 奈米歐傑電子能譜儀分析..............45 4.7 TEM下觀察之材料橫截面分析..............46 第五章 結 論..............64 參考文獻..............67

1. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Chapman & Hall (1992).
2. S Tamulevicius, “Stress and Strain in the Vacuum Deposited thin Film”, Vacuum, Volume 51, number 2, pp.127-139,( 1998).
3. D. S. Campbell, Mechanical Properties of Thin Film. In Handbook of Thin Film Technology, L. I. Massel and R.Glang ed., New York:
McGraw-Hill Book Company, P.12-21, (1970).
4. M. Ohring, The Materials Science of Thin film, (ACADEMIC.PRESS, INC. San Diego, , pp.419. (1992)
5. 物理學名詞, 2nd ed., 國立編譯館編訂, 台灣商務印書館發行,
230(1990).
6. J. D. Wilcock, ”Stress in thin film”, Ph. D. Dissertation, Electrical
Engineering Department, Imperial Collage, London University,
London, (1967).
7. E. Bauer, A.K. Green, and K.M. Kunz, “The formation of thin
continuous films from isolated nuclei,” in Basic Problems in thin
film Physics, edited by R. Niedermager and H. Mayer, Vandenhoeck
and Ruprecht: Gottingen, pp. 135-151, (1966).
8. R. W. Hoffman, “Stress in thin film: the relevance of gain
boundaries and impurities”, Thin Solid Film, 34, pp. 185-190, (1976).
9. P. A. Alexander and R.W. Hoffman, “Effect of impurities on
intrinsic stress in thin Ni film, J. Vac. Sci. Tech, 13, pp. 96-98.
(1976)
10. F. M. D,Heurle, “Aluminum Films Deposited by RF Sputtering”,
metallurgical Transactions, 1, pp.725-732, (1970).
11. K. H. Muller, “Stress and Microstructure of Sputter-Deposited Thin
Film: Molecular Dynamics Investigations“, J. Appl. Phys., 62, pp.
1796-1799, (1987).
12. H. Windischmann, “An Intrinsic Stress Scaling Law for
Polycrystalline Thin Film Prepared by Ion Beam Sputtering”, J.
Appl.Phys., 62, pp. 1800-1807, (1987).
13. C. A. Davis, “A Simple Model for Formation of compressive Stress
in Thin Films by Ion Bombardment”, Thin Solid Films, 226,
pp.3-14,(1993).
14. J. –D. Kamminga, Th. H. de Kijser, R. Delhez, E. J. Mittemeijer, “AModel for Stress in Thin Layers Induced by Misfitting Particles AnOrigin for Growth Stress”, Thin solid Films, 317, pp.169-172, (1998).
15. G. Kunyt, W. Lauwerens, L. M. Stals, “A Unified Theoretical Model for Tensile and Compressive Residual Film Stress“, Thin Solid Films, 370, pp.232-237, (2000).
16. H. K. Pulker, “Stress measurement and calculation for vacuum
deposited MgF2 films”, Thin Solid Film, 58 , pp.371-376, (1979).
17. Hidetoshi Yanai, Nobuyuki Kishine, Yukari Komaba, and
Tukitaka Murakami, “Measurement of Young,s modulus and
stress analysis of a magnetic thin film“, JSME Inter. J. Series A,
Vol.39, No.1, p.129-134, (1996).
18. Anthony E. Ennos, “Stresses developed in optical film coatings” ,
Applied Optics, Vol.5, No.5, No.1, Jan, pp.51-61. (1966)
19. H. Liungcrantz, L. Hultman, and J. E. Sundgren, “Residual Stress
and Fracture Properties of Magnetron Sputtered Ti Films an Si
Microelements”, J. Vac. Sci. Technol. A 11(3), p.543-553, May/Jun(1993).
20. A. K. Sinha, H. J. Levistein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films on Si Substrates.”, J. Appl. Phys., 49, pp.2423-2426, (1978)
21. W. D. Nix, “ Mechanical Properties of thin films”, Metallurgical Trans., A20, pp.2217-2245, (1989).
22. D. S. Gardner and P.A. Flinn, “Mechanical stress as a function of temperature for aluminum alloy films, “ J. Appl. Phys., 67, pp.1831-1843,(1990).
23. E. Kobeda and E.A. Irene,”A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si”, J. Vac. Sci. Technol. B4,pp720-722,(1986).
24. J.S. Koehler, “Attempt to design a strong solid”, Physical review B 2, pp. 541, (1970).
25. H. Holleck, and V. Schier, “Multilayer PVD coatings for wearprotection”, Surface and Coatings Technology 76-77, pp. 328, (1995).
26. J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp. 322, (2000).
27. S.Veprek and S.Reiprich, “A concept for the design of novel superhard coating” Thin Solid Films 268, pp.64, (1995).
28. S. Veprek, “New development in superhard coatings: the superhard
nanocrystalline-amorphous composites”, Thin Solid Films 317, pp. 449, (1998.)
29. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size”, Thin Solid Films 297, pp. 145,( 1997).
30. S. Veprek, “Different approaches to superhard coating and nanocomposites”, Thin Solid Films 476, pp. 1, (2005).
31. 施孟君, 何恕德, 林鶴南,“基材效應對薄膜奈米壓痕量測之影響”, 中國材料學會年會論, (2002).
32. B.D. Fabes, W.C. Oliver, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations”, Journal of Materials Research 7, No. 11, pp. 3056, (1992).
33. Ranjana Saha, William D.Nix, “Effect of substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materials 50, pp. 23, (2002).
34. S. Veprek, Ali S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, pp. 175, (2001).
35. J. Musil, F. Kunc, H. Zeman, H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposites coatings”, Surface and Coatings Technology 154, pp. 304, (2002).
36. Q. Ma and D.R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research 10, pp. 853, (1995) .
37. M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, Ph. Houdy, and J.L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films”, Journal of Applied Physics 87, pp.7753,( 2000).
38. 張有進,國立台灣科技大學機械研究所碩士論文 (2005)。
39.A.C. Fishcher-Cripps, UMIS Nanoindentation user’s handout, CSIRO (2000).
40.W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
41.UMIS user’s manual, CSIRO (2002).
42. 汪建民,”材料分析”,中國材料科學學會,(1998)
43. 陳力俊,“材料電子顯微鏡學”,行政院國科會精密儀器發展中心 (1994)。
44. G.C.A.M. Janssen, J.-D. Kamminga, Appl. Phys. Lett. 85 3086(2004)
45. Petrov, P.B. Barna, L. Hultman, J.E. Greene, J. Vac. Sci. Technol. A21 S117(2003)
46. G. Guisbiers et al. / Acta Materialia 55 3541–3546(2007)

QR CODE