簡易檢索 / 詳目顯示

研究生: 賴佑昇
Yu-sheng Lai
論文名稱: 高矽球墨鑄鐵在空氣中之氧化行為及顯微組織
The Oxidation Behavior and Microstructure of High Silicon Ductile Irons in Air
指導教授: 雷添壽
Tien-shou Lei  
口試委員: 李驊登
Hwa-teng Lee
鄭偉鈞
Wei-chun Cheng  
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 高矽球墨鑄鐵高溫氧化
外文關鍵詞: High Silicon Ductile Irons, oxidation
相關次數: 點閱:267下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目的在探討高矽球墨鑄鐵在靜止空氣中之高溫氧化行為,觀察與分析氧化層的結構與成分,並說明不同添加合金(矽、鉬、釩、銅)及石墨球化率對高溫抗氧化的影響。實驗的進行是將試片放置於陶瓷坩堝內,在700與900 C空氣氣氛下之熱處理爐分別持溫4、20、50及96 h。實驗完成後量測其重量變化,並利用OM、SEM、EDS及EPMA觀察分析氧化層結構。
實驗結果顯示: (1)各球墨鑄鐵在700 C氧化後重量皆隨著時間的增加而增加,但是在900 C時球墨鑄鐵發生脫碳現象而使重量增加與時間的關係不明確,顯示球墨鑄鐵可以使用到700 C,但是卻不適合在更高的900 C空氣中使用;(2)在700及900 C氧化後,氧化層由外往內依序為Fe2O3、Fe3O4、Fe2SiO4+Fe3O4及SiO2。SiO2在合金與氧化層的介面處呈黑色薄膜,Fe2SiO4組織呈深灰色條紋或顆粒狀。由於矽擴散能力的限制,氧化層內層呈現為富矽的區域,而外層則為無矽的區域;(3)矽含量較高之球墨鑄鐵的抗氧化能力較佳,其與氧化過程是否會形成SiO2保護膜有密切關係;(4)高矽球墨鑄鐵的抗氧化能力雖然隨矽含量的增加而提升,但亦受添加合金元素的影響, Mo、V及Cu的添加會有助於抗氧化能力的提升,但在900 C時添加釩會造成負面的影響。


In this research it is aimed to investigate the oxidation behavior of high silicon ductile irons, and to identify the microstructure and chemistry of oxide layers. The effects of various alloying elements (Si、Mo、V、Cu) and graphite nodularity are also discussed in this study. Specimens set in crucibles were heated in a furnace at 700 and 900 C for 4、20、50 and 96 h, specimen weigh gains were measured after oxidation. The microstructure and chemistry of the oxide layers were examined by OM、SEM、EDS and EPMA.
The results show that: (1) For ductile irons, weight gains increase with increasing time after the oxidation at 700 C. Decarburization occurs at 900 C, which shows the relationship between weight gains and time was indefinite, indicating that ductile iron can be used up to 700 C, but below 900 C; (2) The order of oxide layers from outer to inner are Fe2O3、Fe3O4、Fe2SiO4+Fe3O4 and SiO2 respectively. The dark film lies in the alloy-oxide interface which is identified as SiO2, the grayish stringers and particles are Fe2SiO4. Since the restriction of Si diffusion rate, Si can only be found in the inner oxide, but only a trace of Si in the outer oxide; (3) The oxidation resistance of ductile iron increase with the increasing of Si content, which may relate to the formation of SiO2 film; (4)Although increasing Si promote the oxidation resistance, high Si ductile iron is also influenced by alloying elements, the addition of Mo、V and Cu enhance the oxidation resistance in the two investigated temperatures, but it is detrimental for adding V at 900 C.

摘要 I Abstract II 誌謝 III 圖索引 VI 表索引 IX 第一章 前言 1 第二章 文獻回顧 2 2.1. 金屬氧化膜的成長機構 2 2.1.1. 鋼鐵的氧化與脫碳 2 2.1.2. 氧化膜的完整性 3 2.1.3. 氧化行為 4 2.1.4. 內部氧化 5 2.1.5. 鐵的氧化機制 5 2.1.6. 鐵矽合金之高溫氧化 6 2.2. 球墨鑄鐵之高溫氧化 8 2.2.1. 合金元素的影響 8 2.2.2. 高矽球墨鑄鐵高溫氧化之研究 10 第三章 實驗方法 17 3.1. 實驗流程與材料準備 17 3.2. 高溫氧化試驗 17 3.2.1. 氧化增重實驗 17 3.2.2. 顯微組織觀察與微量分析 18 3.2.3. 球化率分析 19 第四章 結果與討論 29 4.1. 實驗結果 29 4.1.1. 氧化重量變化 29 4.1.2. OM金相觀察 29 4.1.3. 氧化層的微觀組織與元素分佈 30 4.1.4. 氧化後球化率與球墨數的變化 34 4.2. 討論與分析 35 4.2.1. 氧化行為 35 4.2.2. 脫碳 35 4.2.3. 球化率與內部氧化 36 4.2.4. 氧化層之孔洞 37 4.2.5. 氧化層之結構 38 4.2.5.1. 氧化物的自由能及平衡氧分壓 38 4.2.6. 合金元素的影響 40 第五章 結論 103 參考文獻 105 附錄 108 作者簡介 110

[1] C. F. Walton, Iron casting handbook. New York: Iron Casting Society, 1981.
[2] 潘永寧,「耐高溫球狀石墨鑄鐵」,機械月刊,第10卷,第8期,第95~101頁,1984。
[3] 柯賢文,「腐蝕及其防治」, 全華科技圖書股份有限公司,第228~229頁,1995。
[4] Z. D. Jastrzebski, The nature and properties of engineering materials. New York: John Wiley and Sons, 1987.
[5] 黃振賢,「金屬熱處理」,文京圖書有限公司,第232~234頁,2000。
[6] D. R. Askeland, The science and engineering of materials, 5 ed. Toronto: Thomson, 2006.
[7] M. G. Fontnana, "Corrosion engineering," McGraw-Hill Book Company, pp.513-516, 1986.
[8] N. Birks and G. H. Meier, Introduction to high temperature oxidation of metals. London: Edwar Arnold Ltd, 1983.
[9] J. M. West, Basic corrosion and oxidation. New York: Prentice Hall PTR, 1986.
[10] A. Brasunas, Nace basic corrosion course. Huston: Norman E. Hamner, 1970.
[11] Kubaschewski and Hopkings, Oxidation of metal and alloy. New York: Academic Press, 1962.
[12] T. Ban, "The formation of protective films on iron-silicon alloys," Corrosion Science, vol. 19, pp. 289-293, 1979.
[13] C.W. Tuck, "Non-Protective and protective scaling of a commercial 1 3/4 silicon-Iron alloy in the range 800~1000°C," Corrosion Science, vol. 5, pp. 631-643, 1965.
[14] I. Svedung and N. Vannerberg, "The Influence of silicon on the oxidation properties of Iron," Corrosion Science, vol. 14, pp. 391-399, 1974.
[15] A. Atkinson, "A theoretical analysis of the oxidation of Fe-Si alloys," Corrosion Science, vol. 22, pp. 87-102, 1982.
[16] M. F. Burditt, Ductile iron handbook. Des Plaines: American Foundrymen's Society, 1992.
[17] C. K. Chang, "The study on the microstructures and mechanical properties of high silicon ductile irons alloyed with molybdenum," M.S. , National Taiwan University of Science and Technology, Taipei, 2006.
[18] C. L. Wu, "Simulation of solidification in eutectic nodular cast iron system," M.S., National Taiwan University of Science and Technology, Taipei, 1988.
[19] B. Black, G. Burger, R. Logan, R. Perrin, and R. Gundlach, "Microstructure and dimensional stability in Si-Mo ductile irons for elevated temperature applications," SAE 2002-01-2115, SAE, 2002.
[20] 魏瓞彰,「球狀石墨鑄鐵之耐熱性質研究」,碩士論文,國立台灣大學,台北,2001。
[21] 賴逸林,「石墨型態對鑄鐵耐熱性質之影響研究」,碩士論文,國立台灣大學,台北,2001。
[22] U. R. Evans, The Corrosion and Oxidation of Metals, 1960.
[23] M. Rezvani, "The effect of vanadium in as-cast ductile iron," Cast Metals Res., vol. 10, 1997.
[24] C. Labrecque and M. Gagne, "Ductile Iron: Fifty years of continuous development ", Canadian Metallurgical Quarterly, vol. 37, pp. 343-378, 1998.
[25] D. Behrens, Corrosion handbook. New York: VCH, 1989.
[26] F. Tholence and M. Norell, "High temperature corrosion of cast alloys in exhasut environment I-ductile cast iron," Oxidation of Metals, vol. 69, pp. 13-36, 2008.
[27] S. H. Park, "Development of a heat resistant cast iron alloy for engine exhaust manifolds," SAE2005-01-1688, SAE, 2005.
[28] R. E. Lee, Scanning electron microscopy and X-ray microanalysis. New Jersey: Pearson Education, Limited.
[29] J. Robertson, "Healing layer formation in Fe-Cr-Si ferritic steels," Materials Science and Technology, vol. 5, pp. 741-753, 1989.
[30] F. Tholence, "AES characterization of oxide grains formed on ductile cast irons in exhaust environment," Surface and Interface Analysis, vol. 34, pp. 535-539, 2002.
[31] P. T. Moseley, "The oxidation of dilute iron-silicon alloys in carbon dioxide," Corrosion Science, vol. 22, pp. 68-86, 1982.
[32] D. R. Gaskell, Introduction to the thermodynamics of materials. New York: Taylor and Francis Books, 2003.
[33] D. R. Gaskell, Introduction to the thermodynamics New York: McGraw-Hill Internation.
[34] Y. L. Yang, "The effect of silicon content on the high temperature oxidation behavior of Si-containing steel," M.S., National Cheng Kung University of Science and Technology, Tainan, 2006.
[35] D. S. Petrovic, M. Jenko, and V. Dlecek, "The Influence of copper on the decarburezation and recrystallization of Fe-Si-Al alloys," Materiali in Tehnologije, vol. 40, pp. 13-16, 2006.

QR CODE