簡易檢索 / 詳目顯示

研究生: 張俐慈
Li-Ci Zhang
論文名稱: 材料擠製型桌面3D列印機之微粒排放研究:內部填充列印參數之影響
Study on Particle Emissions of Material-Extrusion-Type Desktop 3D Printing: the Effects of Infill
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 鄭正元
Jeng-Ywan Jeng
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 3D列印材料擠製成型內部填充列印參數(Infill)微粒排放ABS
外文關鍵詞: 3D Printing, Material Extrusion, Infill, Particle Emissions, ABS
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來材料擠製型3D列印機大量被使用,但一般使用者的工作環境普遍缺乏適當的通風設備,因此3D列印排放之汙染將會是個重要的議題。在一般列印參數設置中,與內部填充相關的列印參數常應用於減少重量及時間,但目前尚未有文獻指出內部填充參數設置對於微粒釋放的影響,因此本研究目的為評估內部填充相關列印參數對微粒釋放的影響。
    初步測試結果顯示,ABS排放之微粒濃度在封頂第一層列印過程中會產生高峰值,高峰值產生之位置為中空結構結束列印後的第一層。 進一步實驗則評估內部填充高度、內部填充密度、內部填充結構和封頂第一層列印速度對微粒釋放的影響,結果顯示較少的內部填充高度、較高的內部填充密度、較密集的內部填充結構與較慢的封頂第一層列印速度將導致較少的微粒釋放。本研究推斷噴頭端出料不順是導致高峰值產生的主要原因,且發生於模型內部中空結構無法提供第一層固體層列印足夠接觸點的情況。經實驗證明,採取適當之內部填充列印參數設置(30%的內部填充密度與30 mm/s的封頂第1層列印速度)能夠有效降低96%的微粒高峰值濃度。本研究最終根據高峰值現象的發現在特定時段開啟微粒移除裝置,結果顯示僅需在封頂列印階段開啟裝置就能同時達到有效的過濾與節能的需求。


    Recently, a large number of material-extrusion-type 3D printers have been used, but there is usually no air quality control in their working environment. Therefore, the pollutions of particle emissions will be an important issue. In the general printing parameter settings, infill is commonly used in printing to reduce weight and time, but rare research studies the effects of infill in particle emissions. Hence, in this research, particle emission behaviors with the existence of infill were investigated.
    Preliminary test results that the measured particle concentrations of ABS samples showed a peak emission during the 1st top solid layer printing, which was the first layer after infill. Further experiments were conducted to evaluate the effects of infill height, infill density, infill pattern, and feed rate of the 1st top solid layer printing. Consequently, less infill height, higher infill density, more intensive infill pattern and slower feed rate would lead to less particle emissions and a smaller peak value. Based on the experimental results, this study concluded that the material stuffed around the nozzle was the main reason for the peak emissions and it occurred when the non-solid structure inside the model cannot provide enough contact points to the printing of first layer of top layer. However, this experiment proved that 96% of the peak emissions of particles can be reduced by adopting appropriate infill printing parameter settings (30% infill density and 30mm/s feed rate in the 1st top solid layer printing). In the end of the study, the particle removal device was turned on at a certain time according to the discovery of the peak phenomenon. The result showed that it was only necessary to open the device during the top printing period to achieve effective filtering and energy saving requirements at the same time.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章、緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法與步驟 3 1.4 論文架構 4 第二章、文獻回顧 5 2.1 空氣汙染 5 2.1.1 空氣污染種類 5 2.1.2 空氣中懸浮微粒 6 2.2 高效濾網之過濾機制 8 2.3 材料擠製成型技術 (Material Extrusion) 11 2.4 3D列印排放汙染相關研究 13 第三章、材料與方法 17 3.1 實驗設置 17 3.1.1 實驗環境與測試方法 17 3.1.2 測試模型與實驗步驟 21 3.2 採樣流程 24 3.2.1 第一階段之採樣流程 24 3.2.2 第二階段之採樣流程 26 3.2.3 微粒之採樣位置 27 3.3 實驗儀器與材料 29 3.3.1 微粒採樣儀器 29 3.3.2 熔融擠製型3D列印機台 31 3.3.3 實驗材料 31 3.4 3D列印機台之前置工作設置 32 第四章、結果與討論 35 4.1 微粒濃度之趨勢觀察 35 4.1.1 各種幾何模型之濃度趨勢 35 4.1.2 微粒濃度之趨勢驗證 38 4.2 高峰值產生時機與成因分析 41 4.2.1 驗證高峰值產生時機 41 4.2.2 高峰值產生之成因分析 44 4.3 列印參數對高峰值的影響 46 4.3.1 內部填充高度對高峰值的影響 46 4.3.2 內部填充密度對高峰值的影響 49 4.3.3 內部填充結構對高峰值的影響 55 4.3.4 列印速度對高峰值的影響 57 4.4 降低微粒濃度之策略與驗證 60 4.4.1 列印參數之策略 60 4.4.2 列印參數之策略驗證 63 4.5 微粒移除裝置之應用 66 4.5.1 微粒移除裝置與儀器 66 4.5.2 封頂列印階段之微粒移除策略 68 4.5.3 封頂列印階段之微粒移除策略驗證 72 第五章、結論與未來展望 81 5.1 結論 81 5.2 未來展望 82 參考文獻 83

    [1] Environmental Protection Administration Executive Yuan, R.O.C
    ( https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL000579 )

    [2] World Health Organization
    (http://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health )

    [3] Environmental Protection Administration Executive Yuan, R.O.C
    ( https://www.epa.gov.tw/public/Data/511515595871.pdf )

    [4] Environmental Protection Administration Executive Yuan, R.O.C
    ( http://air.epa.gov.tw/ )

    [5] 詹長權,2014, “中部空品區細懸浮微粒暴露評估及成因分析期中報告”,行政院環境保護署。

    [6] Pope, C.A. III, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., and Thurston, G.D. (2002). “Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution.” JAMA 287(9):1132-1141.

    [7] Pope, C.A. III, Ezzati, M., and Dockery, D.W. (2009). “Fine-Particulate Air Pollution and Life Expectancy in the United States.” The New England Journal of Medicine 360: 376-386.

    [8] Pope, C.A. III and Dockery, D.W. (2012). “Health Effects of Fine Particulate Air Pollution: Lines that Connect.” Journal of the Air & Waste Management Association 56(6): 709-742.

    [9] Brook, R.D., Rajagopalan, S., Pope, C.A. III, Brook J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Hong, Y., Luepker, R.V., Mittleman M.A., Peters, A., Siscovick, D., Smith, S.C., Jr., Whitsel, L., and Kaufman, J.D. (2010). “Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement from the American Heart Association.” Circulation 121(21): 2331-2378.

    [10] Kim, K.H., Kabir, E., and Kabir, S. (2015). “A Review on the Human Health Impact of Airborne Particulate Matter.” Environ Int 74: 136-143.

    [11] Lee, B.-J., Kim, B., and Lee, K. (2014). “Air Pollution Exposure and Cardiovascular Disease.” Toxicological Reasearch 30(2): 71-75.

    [12] Yang, B., Chen, D., Zhao, H., and Xiao, C. (2016). “The Effects for PM2.5 Exposure on Non-Small-Cell Lung Cancer Induced Motility and Proliferation.” Springerplus 5(1): 2059.

    [13] Fiordelisi, A., Piscitelli, P., Trimarco, B., Coscioni, E., Iaccarino, G., and Sorriento, D. (2017). “The Mechanisms of Air Pollution and Particulate Matter in Cardiovascular Diseases.” Heart Fail Rev 22(3): 337-347.

    [14] Donaldson, K., Stone, V., Clouter, A., Renwick, L., and MacNee, W. (2001). “Ultrafine Particles.” Occup Environ Med 58: 211-216.

    [15] Nelson, H., S., Hirsch, S.R., Ohman, J.L., Jr., Platts-Mills, T.A.E., Reed, C.E., and Solomon, W.R. (1988). “Recommendations for the Use of Residential Air Cleaning Devices.” Journal of Allergy and Clinical Immunology 82(4): 661-669.

    [16] Kowalski, W.J., BaHNfleth, W.P., and Whittam, T.S. (1999). “Filtration of Airborne Microorganisms Modeling and Prediction.” ASHRAE Transactions; Atlanta 105(4).

    [17] TSI Ltd “Mechanism of Filtration for High Efficiency Fibrous Filters”.
    ( http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/ITI-041-A4.pdf )
    [18] Additive Manufacturing Standards Formulated by ASTM.
    (https://www.astm.org/industry/additive-manufacturingoverview.html )

    [19] Gibson, I., Rosen, D.W., and Stucker, B. (2010). “Additive Manufacturing Technologies.” New York: Spring 238.

    [20] Environmental Protection Administration Executive Yuan, R.O.C
    ( https://iaq.epa.gov.tw/indoorair/page/News_6_1.aspx )

    [21] Wendel, B., Rietzel, D., Kühnlein, F., Feulner, R., Hülder, G., and Schmachtenberg, E. (2008). “Additive Processing of Polymers.” Macromolecular Materials and Engineering 293(10): 799-809.

    [22] Azimi, P., Zhao, D., Pouzet, C., Crain, N.E., and Stephens, B. (2016). “Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments.” Environ Sci Technol 50(3): 1260-1268.

    [23] Stephens, B., Azimi, P., Orch, Z.E., and Ramos, T. (2013). “Ultrafine Particle Emissions from Desktop 3D Printers.” Atmospheric Environment 79: 334-339.

    [24] Kim, Y., Yoon, C., Ham, S., Park, J., Kim, S., Kwon, O., and Tsai, P.-J. (2015). “Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation.” Environmental Science & Technology 49: 12044-12053

    [25] Steinle, P. (2016). “Characterization of Emissions from a Desktop 3D Printer and Indoor Air Measurements in Office Settings.” J Occup Environ Hyg 13(2): 121-132.

    [26] Yi, J., LeBouf, R.F., Duling, M.G., Nurkiewicz, T., Chen, B.T., Schwegler-Berry, D., Virji, M.A., and Stefaniak, A.B. (2016). “Emission of Particulate Matter from a Desktop Three-Dimensional (3D) Printer.” J Toxicol Environ Health A 79(11): 453-465.

    [27] Mendes, L., Kangas, A., Kukko, K., Mølgaard, B., Säämänen, A., Kanerva, T., Ituarte, I.F., Huhtiniemi, M., Stockmann-Juvala, H., Partanen, J., Hämeri, K., Eleftheriadis, K., and Viitanen, A.-K. (2017). “Characterization of Emissions from a Desktop 3D Printer.” Journal of Industrial Ecology 21(S1): S94-S106.

    [28] Vance, M.E., Pegues, V., Montfrans, S.V., Leng W., and Marr, L.C. (2017). “Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.” Environ Sci Technol 51(17): 9516-9523.

    [29] Stabile, L., Scungio, M., Buonanno, G., Arpino, F., and Ficco, G. (2017). “Airborne Particle Emission of a Commercial 3D Printer: The Effect of Filament Material and Printing Temperature.” Indoor Air 27(2): 398-408.

    [30] Wojtyla, S., Klama, P., and Baran, T. (2017). “Is 3D Printing Safe? Analysis of the Thermal Treatment of Thermoplastics: ABS, PLA, PET, and Nylon.” J Occup Environ Hyg 14(6): D80-D85.

    [31] Deng, Y., Cao, S.-J., Chen, A., and Guo, Y. (2016). “The Impact of Manufacturing Parameters on Submicron Particle Emissions from a Desktop 3D Printer in the Perspective of Emission Reduction.” Building and Environment 104: 311-319.

    [32] 3D Matter, “What is the Influence of Infill %, Layer Height and Infill Pattern on My 3D Prints?” Published in 2015. ( http://my3dmatter.com/influence-infill-layer-height-pattern/ )

    [33] Ahn, S.H., Montero, M., Odell, D., Roundy, S., and Wright, P.K. (2002). “Anisotropic Material Properties of Fused Deposition Modeling ABS.” Rapid Prototyping Journal 8(4): 248-257.

    無法下載圖示 全文公開日期 2023/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE