簡易檢索 / 詳目顯示

研究生: 李澤熙
Christian Raul Lipa Gonzales
論文名稱: 規則界面塊系統與 FDM 3D 列印優化
Ruled Interface Block System and the Optimization for FDM 3D Printing
指導教授: 施宣光
Shen-Guan Shih
口試委員: 施宣光
Shen-Guan Shih
陳珍誠
Chen-Cheng Chen
Oliver Tessmann
Oliver Tessmann
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 190
外文關鍵詞: Ruled surface, Topological interlocking, Free-form, Additive Manufacturing
相關次數: 點閱:36下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 曲面的建築方案在設計和製造上提出了重大挑戰,需要深入的專業知識,以進行鑲嵌和將幾何形狀分解為合理可建造的元素,使用能夠處理大量計算的先進硬件和軟件,以及特定機械以成功實現建築物體。積層製造是一種提供更大製造靈活性的技術。近年來,建築師和建造者積極在原型設計和建造過程中實施3D列印。本研究提出了一種設計和製造方法論,建立創新的塊體系統與3D列印相結合,以促進此類結構的構想。本論文建基於當前拓撲相互鎖定和積層製造方法,並進一步發展提出整合的設計系統。
    直紋界面塊體系統(RIBS)旨在通過三種主要策略優化具有非平面界面的拓撲相互鎖定塊體的生成過程:引入低計算量之幾何元素進行塊體造型運算、基於控制點位置調整幾何形狀,以及使用網格表面進行鑲嵌過程和塊體的幾何表示。不對稱和不規則的彎曲結構鑲嵌會導致具有非重複形式的塊體,而3D列印技術解決了在這些情景中實施RIBS所需的靈活性。本研究建議的塊體系統與此技術能夠良好整合,因為這兩個概念都允許克服個別限制以實現過程中更大的靈活性。
    研究最後通過實際設計案例運用這兩種概念,分析和評估兩種方法論在建造建築元素需要顯著靈活性的情境中的表現。


    The proposal of curved architectural forms implies significant challenges in design and manufacturing, requiring in-depth specialized knowledge for tessellation and decomposition of the geometry into reasonably constructible elements, the use of advanced hardware and software capable of handling extensive calculations, as well as specific machinery to materialize the architectural object successfully. Additive manufacturing is a technology designed to provide greater flexibility in fabrication. In recent years, architects and builders have actively implemented 3D printing in the prototyping and construction process. This research proposes a design and manufacturing methodology that combines an innovative block system with 3D printing to facilitate the conception of such structures. This proposal is based on the study of the current development of topological interlocking and additive manufacturing methods focused on construction.
    The Ruled Interface Block System (RIBS) aims to optimize the generation process of topological interlocking blocks with a non-flat interface for curved assemblies through three main strategies: the introduction of geometric elements with low computation for block formation, control of the resulting geometry based on point positions, and the use of mesh surfaces for the tessellation process and geometric representation of the blocks. Certainly, asymmetric and irregular curved structures tessellation results in blocks with non-repetitive forms. The flexibility necessary for the implementation of the RIBS in these scenarios is addressed by 3D printing technology. The proposed block system synergizes well with this technology, as both concepts allow overcoming individual limits to achieve greater flexibility in the process.
    The research concludes with a practical exercise employing both concepts to analyze and evaluate the performance of both methodologies in a scenario where significant flexibility in the manufacturing of an architectural element is required.

    ABSTRACT IN ENGLISH i ABSTRACT IN CHINESE iii ACKNOWLEDGEMENTS v LIST OF CONTENT vii LIST OF FIGURES xiii LIST OF TABLES xxvi 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Problem Statement 4 1.3 Objectives 6 1.4 Limitation 7 2 LITERATURE REVIEW 9 2.1 Topological interlocking principles 9 2.1.1 fundamentals of topological interlocking 9 2.1.2 Advanced generation methods for topological in terlocking blocks 12 2.2 Structural performance of topological interlocking 18 2.2.1 Efficiency of topological interlocking platonic shapes 19 2.2.2 Non-planar topological interlocking in structures 23 2.2.3 Ground supported topological interlocking 26 2.2.4 Bracing system in topological interlocking blocks 29 2.3 Topological interlocking in the development of complex architectural design 34 2.3.1 Building components based on topological inter locking 34 2.3.2 Topological interlocking in curved shape’s fabrication 41 2.4 Feasibility of additive manufacturing in modular construction 60 2.4.1 Current state of additive manufacturing in the con struction field 61 2.4.2 Characteristics of additive manufacturing for the development of architecture and construction 67 2.4.3 Discussion about topological interlocking blocks based on additive manufacturing 75 2.5 Synthesis of the literature review 79 3 METHODOLOGY 82 3.1 Research Approach 82 3.1.1 Research Paradigm 82 3.1.2 Research Design 83 3.1.3 Justification of the Approach 84 3.2 Methodology Flowchart 86 3.3 Preliminary Exploration 87 3.3.1 Topological Interlocking Exploration 87 3.3.2 3D Printing Exploration 93 3.4 Conceptualization and Design of the Ruled Interface Block System (RIBS) 97 3.4.1 Block Definition 97 3.4.1.1 Study of Ruled Surface Integration 97 3.4.1.2 Numerical Ranges 102 3.4.1.3 Block Design 104 3.4.2 RIBS Tessellation 106 3.4.2.1 Determining Tessellation Conditions 107 3.4.2.2 Tessellation Process 112 3.4.2.3 Tessellation of Flat Surfaces 117 3.4.2.4 Tessellation of Curved Surfaces 118 3.4.2.5 Simulation of Structural Behavior 120 3.4.2.6 Bracing System Exploration 124 3.5 Additive Manufacturing for RIBS 126 3.5.1 Block Geometry Refining for 3D Printing 126 3.5.2 Slicing Process 128 3.5.2.1 3D Printing by Slicer Software 128 3.5.2.2 Grasshopper for G-code File Generation 131 3.6 Small-scale practical exercise 133 3.6.1 Design of a Conceptual Architectural Pavilion 133 3.6.1.1 Scenario Layout and Concept 133 3.6.1.2 Architectural design 135 3.6.1.3 RIBS Tessellation 137 3.6.1.4 Section model 137 3.6.2 Manufacturing process 138 3.6.2.1 Material and Equipment 138 3.6.2.2 Blocks Fabrication 139 3.6.2.3 Model Assembling 140 4 RESULTS AND DISCUSSION 142 4.1 Evaluation of the Ruled Interface Block System 142 4.1.1 Types of block system 142 4.1.2 RIBS as a tessellation method 144 4.1.2.1 Shape Approximation and Control 145 4.1.2.2 Structural Evaluation 146 4.1.2.3 Computational Efficiency 147 4.1.2.4 Impact of a Bracing System Implemen tation 149 4.1.3 RIBS Applicability 151 4.1.3.1 Structural Application 152 4.1.3.2 Design Application 154 4.1.3.3 Sustainability and Environmental Control 157 4.2 Manufacturing Process Evaluation 158 4.2.1 Influence of 3D printing on RIBS 158 4.2.2 Limitations of Slicer Software 159 4.2.3 Incorporation of Grasshopper into the 3D Printing Process 160 4.2.4 3D Printing as Part of the Design Process 162 4.3 Evaluation of the Practical Exercise 163 4.3.1 Structural Composition 163 4.3.2 Design Presentation 165 4.3.3 Printing Process Discussion 167 4.3.4 Assembling Record 168 5 CONCLUSION 169 5.1 Conclusions and findings 169 5.2 Future Development 172 REFERENCES 174 APPENDIX 1 Large-scale 3D printing 183 APPENDIX 2 Architectural pavilion 188

    Abdallah, Y. K., & Estévez, A. T. (2021). 3d-printed biodigital clay bricks. Biomimetics, 6(4), 59.

    Aduatz, P. (2021). Gradient furniture collection design process. Retrieved 2023-08-09, from https://www.designboom.com/design/philipp-aduatz -3d-printed-outdoor-concrete-furniture-07-27-2020/

    Aduatz, P. (2023). World’s first 3d printed film studio by philipp aduatz. Retrieved 2023- 08-20, from https://www.philippaduatz.com/3d-printed-film-studio/

    AECTUAL. (n.d.). Pattern terrazzo . durabella. Retrieved 2023-08-09, from https:// www.aectual.com/systems/pattern-terrazzo

    AI-build. (n.d.). Automated quality control. Retrieved 2023-08-10, from https://ai -build.com/

    Akleman, E., Krishnamurthy, V. R., Fu, C.-A., Subramanian, S. G., Ebert, M., Eng, M., … Panchal, H. (2020). Generalized abeille tiles: Topologically interlocked space-filling shapes generated based on fabric symmetries. Computers & Graphics, 89, 156–166.

    All3DP. (2023a). 3d printed food: All you need to know. Retrieved 2023-08-17, from https://all3dp.com/2/3d-printed-food-3d-printing-food/

    All3DP. (2023b). 3d printing materials. Retrieved 2023-08-19, from https://all3dp .com/1/3d-printing-materials-guide-3d-printer-material/

    All3DP. (2023c). The 7 main types of 3d printing technology. Retrieved 2023- 08-18, from https://all3dp.com/1/types-of-3d-printers-3d-printing -technology/

    All3DP. (2023d). The best pellet 3d printers of 2023. Retrieved 2023-08-19, from https://all3dp.com/1/cheaper-3d-printing-with-pellets/

    AMFG. (2019). Expert interview: Apworks ceo joachim zettler on finding the right business case for metal 3d printing. Retrieved 2023-08-15, from https:// amfg.ai/2019/03/27/expert-interview-apworks-ceo-joachim-zettler -on-finding-the-right-business-case-for-metal-3d-printing/

    Anton, A., Bedarf, P., Yoo, A., Dillenburger, B., Reiter, L., Wangler, T., & Flatt, R. J. (2020). Concrete choreography: prefabrication of 3d-printed columns. Fabricate 2020: Making resilient architecture, 286–293. 174

    Assembly, A. S. T. I. (2016). Geometric versatility of abeille vault. Aulikki Herneoja Toni Österlund Piia Markkanen Oulu School of Architecture University of Oulu, 391.

    Attaran, M. (2017). The rise of 3-d printing: The advantages of additive manufacturing over traditional manufacturing. Business horizons, 60(5), 677–688.

    Baduge, S. K., Navaratnam, S., Abu-Zidan, Y., McCormack, T., Nguyen, K., Mendis, P., … Aye, L. (2021). Improving performance of additive manufactured (3d printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. In Structures (Vol. 29, pp. 1597–1609).

    Bañón, C., & Raspall, F. (2021). 3d printing architecture: workflows, applications, and trends. Springer.

    Bejarano, A., & Hoffmann, C. (2020). Tiger: Topological interlocking generator. In 2020 ieee games, multimedia, animation and multiple realities conference (gmax) (pp. 1–6).

    CEAD. (2022). Large scale 3d printed transparent lamps. Retrieved 2023-07-05, from https://ceadgroup.com/large-scale-3d-printed-transparent-lamps/

    Chen, Y., He, S., Gan, Y., Çopuroğlu, O., Veer, F., & Schlangen, E. (2022). A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3d concrete printing. Journal of Building Engi neering, 45, 103599.

    Cho, Y. S. E., Shi, J., Taylor, M., Clarke-Hicks, J., Ochoa, I., & Correa, D. (2022). Student and faculty project ’hive’ now on display. Retrieved 2023-08-20, from https://uwaterloo.ca/architecture/news/student-and -faculty-project-hive-now-display

    Christian J. Lange, H. K., Donn Holohan. (2017). Ceramic constellation pavilion. Retrieved 2023-08-20, from https://www.arch.hku.hk/research_project/ ceramic-constellation-pavilion/

    Classen, M., Ungermann, J., & Sharma, R. (2020). Additive manufacturing of reinforced concrete—development of a 3d printing technology for cementitious composites with metallic reinforcement. Applied sciences, 10(11), 3791.

    Cook, P. (2013). Zaha hadid’s heydar aliyev centre in baku is a shock to the system. Retrieved 2023-10-06, from https://www.architectural-review.com/ buildings/zaha-hadids-heydar-aliyev-centre-in-baku-is-a-shock-to -the-system

    Djumas, L., Molotnikov, A., Simon, G. P., & Estrin, Y. (2016). Enhanced mechani 175 cal performance of bio-inspired hybrid structures utilising topological interlocking geometry. Scientific reports, 6(1), 1–10.

    Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., & Pasternak, E. (2001a). A new concept in design of materials and structures: Assemblies of interlocked tetrahedron-shaped elements. Scripta Materialia, 44(12), 2689–2694.

    Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., & Pasternak, E. (2001b). Toughening by fragmentation—how topology helps. Advanced Engineering Materials, 3(11), 885– 888.

    Dyskin, A. V., Estrin, Y., Kanel-Belov, A. J., & Pasternak, E. (2003). Topological inter locking of platonic solids: A way to new materials and structures. Philosophical magazine letters, 83(3), 197–203.

    Dyskin, A. V., Estrin, Y., Pasternak, E., Khor, H. C., & Kanel-Belov, A. J. (2003). Frac ture resistant structures based on topological interlocking with non-planar contacts. Advanced Engineering Materials, 5(3), 116–119.

    Dyskin, A. V., Estrin, Y., Pasternak, E., Khor, H. C., & Kanel-Belov, A. J. (2005). The principle of topological interlocking in extraterrestrial construction. Acta Astronau tica, 57(1), 10–21.

    Dyskin, A. V., Pasternak, E., & Estrin, Y. (2012). Mortarless structures based on topo logical interlocking. Frontiers of Structural and Civil Engineering, 6, 188–197.

    EcoLogicStudio. (2022). Hyundai motorstudio busan presents “habitat one”exhibi tion, offering new perspectives on a sustainable future. Retrieved 2023-09-12, from https://www.hyundai.news/eu/articles/press-releases/hyundai -motorstudio-busan-presents-habitat-one-exhibition.html

    EKWC. (2014). 3d printing clay. Retrieved 2023-08-20, from https://www.elstudio .nl/?p=1356

    Emami, N. (2020). Parametric design and structural performance assessment of a topologically interlocked arch. In Symposium on simulation in architecture+ urban design (simaud 2020) (pp. 25–27).

    Estrin, Y., Bréchet, Y., Dunlop, J., & Fratzl, P. (2019). Architectured materials in nature and engineering. Cham, Switzerland: Springer Nature, 23-49, 423-445.

    Estrin, Y., Dyskin, A. V., Pasternak, E., Schaare, S., Stanchits, S., & Kanel-Belov, A. J. (2004). Negative stiffness of a layer with topologically interlocked elements. Scripta Materialia, 50(2), 291–294.

    Estrin, Y., Krishnamurthy, V. R., & Akleman, E. (2021). Design of architectured materials 176 based on topological and geometrical interlocking. Journal of Materials Research and Technology, 15, 1165–1178.

    Fallacara, G. (2006). Digital stereotomy and topological transformations: reasoning about shape building. In Proceedings of the second international congress on construction history (Vol. 1, pp. 1075–1092).

    Fallacara, G. (2017). Flux vault [flusso] | giuseppe fallacara. Retrieved 2023- 08-20, from https://www.archilovers.com/projects/242046/flux-vault -flusso.html

    Fallacara, G., & Barberio, M. (2018). An unfinished manifesto for stereotomy 2.0. Nexus Network Journal, 20(3), 519–543.

    Fallacara, G., Minenna, V., & Estrin, Y. (2014). Stereotomic design.

    Fiala, J., Mikolas, M., & Krejsova, K. (2019). Full brick, history and future. In Iop conference series: earth and environmental science (Vol. 221, p. 012139).

    Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of cleaner Production, 137, 1573–1587.

    Gaudillière, N., Duballet, R., Bouyssou, C., Mallet, A., Roux, P., Zakeri, M., & Dirrenberger, J. (2019). Large-scale additive manufacturing of ultra-high-performance concrete of integrated formwork for truss-shaped pillars. In Robotic fabrication in architecture, art and design 2018: Foreword by sigrid brell-çokcan and johannes braumann, association for robots in architecture (pp. 459–472).

    Ghouyoum. (2023). A unique architecture to house french perfumer mane 10 scents creations. Retrieved 2023-10-03, from https://www.facebook.com/permalink .php?story_fbid=892453729016308&id=100047550678232

    Gibson, I., Rosen, D., & Stucker, B. (2010). Additive manufacturing technologies springer. New York.

    Glickman, M. (1984). The g-block system of vertically interlocking paving. In Second international conference on concrete block paving (pp. 10–12).

    Gómez-Gálvez, P., Vicente-Munuera, P., Tagua, A., Forja, C., Castro, A. M., Letrán, M., … others (2018). Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nature communications, 9(1), 2960.

    Goodman, R. E. (1995). Block theory and its application. Geotechnique, 45(3), 383–423.

    Group, B. R., Computation, Z. H. A., & Group, D. (2021). Striatus - 3d con crete printed masonry bridge, venice, italy, 2021. Retrieved 2023-08-20, 177 from https://block.arch.ethz.ch/brg/project/striatus-3d-concrete -printed-masonry-bridge-venice-italy-2021

    Hale, L., Linley, E., & Kalaskar, D. M. (2020). A digital workflow for design and fabri cation of bespoke orthoses using 3d scanning and 3d printing, a patient-based case study. Scientific reports, 10(1), 7028.

    Hirsh, B. E. (2020). 3d printed ceramic blocks. Retrieved 2023-08- 09, from https://www.designboom.com/design/bat-el-hirsh-3d-prints -earthenware-natural-cooling-system-09-15-2020/ Hoogstad, E. (2023). Pet-paviljoen. Retrieved 2023-10-11, from https://imdbv.nl/ project/200

    Hosseini, S. M., Mohammadi, M., & Guerra-Santin, O. (2019). Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant’s positions by 2d and 3d shape changes. Building and Environment, 165, 106396.

    INHABITAT. (2019). World’s largest 3d-printed building opens in dubai after 2 weeks of construction. Retrieved 2023-08-20, from https://inhabitat.com/ worlds-largest-3d-printed-building-opens-in-dubai-after-2-weeks -of-construction/

    Jablonska, J. (2018). Architectural acoustics in vineyard configuration concert hall. Jour nal of Architectural Engineering Technology, 7(220), 2.

    Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Rab, S. (2021). Role of additive man ufacturing applications towards environmental sustainability. Advanced Industrial and Engineering Polymer Research, 4(4), 312–322.

    Jipa, A., & Dillenburger, B. (2022). 3d printed formwork for concrete: state-of-the-art, opportunities, challenges, and applications. 3D Printing and Additive Manufactur ing, 9(2), 84–107.

    Johnston, D. W. (2008). Design and construction of concrete formwork. Concrete con struction engineering handbook, 7–49.

    Kanel-Belov, A., Dyskin, A., Estrin, Y., Pasternak, E., & Ivanov-Pogodaev, I. A. (2008). Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. arXiv preprint arXiv:0812.5089.

    Khor, H., Dyskin, A., Estrin, Y., & Pasternak, E. (2004). Mechanisms of fracturing in structures built from topologically interlocked blocks.

    Khor, H. C., Dyskin, A. V., Pasternak, E., Estrin, Y., & Kanel-Belov, A. J. (2002). In tegrity and fracture of plate-like assemblies of topologically interlocked elements. 178 In Structural integrity and fracture (pp. 449–456). Swets & Zeitlinger Lisse.

    Kormaníková, L., Achten, H., Kopřiva, M., & Kmet’, S. (2018). Parametric wind design. Frontiers of Architectural Research, 7(3), 383–394.

    Lai, C., Li, N., Yang, Y., Zheng, S., & Zhang, Q. (2019). Hyper-ceramic tessellation. Retrieved 2023-08-20, from https://msd.unimelb.edu.au/maker-spaces/ robotics-lab/projects2/exlab-robotic-clay-3d-printing-2019

    Lange, C. J., Baker, D. M., Ratoi, L., Lim, D. C., Hu, J., Yu, V., & Thompson, P. (2019). Reformative coral habitats | reef tiles. Re trieved 2023-08-20, from https://www.arch.hku.hk/research_project/ reformative-coral-habitats-reef-tiles/

    Lecci, F., Mazzoli, C., Bartolomei, C., & Gulli, R. (2021). Design of flat vaults with topological interlocking solids. Nexus Network Journal, 23(3), 607–627.

    Loing, V., Baverel, O., Caron, J.-F., & Mesnil, R. (2020). Free-form structures from topologically interlocking masonries. Automation in Construction, 113, 103117.

    Lovegrove, R. (n.d.). Ganic. Retrieved 2023-08-09, from https://nagami.design/ en/project/ganic-sculpture/

    Marzo, C., & Neves, R. (2020). Stereotomic design: The use of stone in contemporary architecture. In Key engineering materials (Vol. 848, pp. 165–173).

    MEAN’. (2020). Mawj - 3d printed chair. Retrieved 2023-08-02, from https://www.m -e-a-n.design/projects/mawj-3d-printed-chair

    Miller, M., & Battaglia, C. (2019). De|stress pavilion: Print-cast concrete. Retrieved 2023-08-20, from https://www.antistatics.net/destress-pavilion

    Mirkhalaf, M., Zhou, T., & Barthelat, F. (2018). Simultaneous improvements of strength and toughness in topologically interlocked ceramics. Proceedings of the National Academy of Sciences, 115(37), 9128–9133.

    Molotnikov, A., Gerbrand, R., Qi, Y., Simon, G. P., & Estrin, Y. (2015). Design of responsive materials using topologically interlocked elements. Smart Materials and Structures, 24(2), 025034.

    Mullins, C., Ebert, M., Akleman, E., & Krishnamurthy, V. (2022). Voronoi spaghetti & voronoodles: Topologically interlocked, space-filling, corrugated & congruent tiles. In Siggraph asia 2022 technical communications (pp. 1–4).

    MX3D. (2021). Mx3d bridge. Retrieved 2023-08-22, from https://mx3d.com/ industries/mx3d-bridge/

    NAGAMI. (2021). “the throne”. Retrieved 2023-08-06, from https://nagami 179 .design/en/project/the-throne/

    Oval, R., Mesnil, R., Van Mele, T., Block, P., & Baverel, O. (2021). Two-colour topology finding of quad-mesh patterns. Computer-Aided Design, 137, 103030.

    Panda, B., & Tan, M. J. (2018). Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3d concrete printing. Ceramics International, 44(9), 10258–10265.

    PERI. (2021). The first printing house in germany: from start to finish. video. Retrieved 2023-08-22, from https://www.peri3dconstruction.com/

    Peters, B. (2012). Building bytes 3d printed bricks by brian peters. Re trieved 2023-08-20, from https://www.dezeen.com/2012/10/31/building -bytes-3d-printed-bricks-brian-peters/

    Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers & graphics, 47, 145–164.

    Protzen, J.-P. (1985). Inca quarrying and stonecutting. The Journal of the Society of Architectural Historians, 44(2), 161–182.

    RAP. (2022). Ceramic house. Retrieved 2023-08-09, from https://studiorap.nl/ Ceramic-House

    Rippmann, M., Van Mele, T., Popescu, M., Augustynowicz, E., Echenagucia, T. M., Bar entin, C. J. C., … Block, P. (2016). The armadillo vault: Computational design and digital fabrication of a freeform stone shell. Advances in architectural geometry 2016, 344–363. Roudavski, S. (2009). Towards morphogenesis in architecture. International journal of architectural computing, 7(3), 345–374.

    Shin, J. (2020). Verticalize earth house. Retrieved 2023-08-09, from https://www .iaacblog.com/programs/verticalize-earth-house/

    Subramanian, S. G., Eng, M., Krishnamurthy, V. R., & Akleman, E. (2019). Delaunay lofts: A biologically inspired approach for modeling space filling modular struc tures. Computers & Graphics, 82, 73–83.

    SWNA. (2019). The curtained wall for gwangju design center. Retrieved 2023-08-09, from https://theswna.com/projects/the-curtained-wall

    Tam, K.-M. M., & Mueller, C. T. (2017). Additive manufacturing along principal stress lines. 3D Printing and Additive Manufacturing, 4(2), 63–81.

    Teixeira, J., Schaefer, C. O., Rangel, B., Maia, L., & Alves, J. L. (2022). A road map to find in 3d printing a new design plasticity for construction–the state of art. Frontiers 180 of Architectural Research.

    Tsavdaridis, K. D. (2015). Applications of topology optimization in structural engineer ing: High-rise buildings and steel components. Jordan Journal of Civil Engineer ing, 9(3), 335–357.

    Vella, I. M., & Kotnik, T. (2016). Geometric versatility of abeille vault: A stereotomic interlocking assembly. In International conference on education and research in computer aided architectural design in europe: Complexity & simplicity (pp. 391– 397).

    Ventola, C. L. (2014). Medical applications for 3d printing: current and projected uses. Pharmacy and Therapeutics, 39(10), 704.

    Vogt, M., Janzen, K., Voßhenrich, A., Lakämper, J., & Lau, R. (2021). Digital assistance for mobile 3d-printing of medical supplies. Transactions on Additive Manufacturing Meets Medicine, 3(1), 506–506.

    WAM. (2016). Mohammed bin rashid: 25printed by 2030. Retrieved 2023-08-22, from https://wam.ae/en/details/1395294773443

    Wang, Z., Song, P., Isvoranu, F., & Pauly, M. (2019). Design and structural optimization of topological interlocking assemblies. ACM Transactions on Graphics (TOG), 38(6), 1–13.

    WASP. (2016). Maker economy starter kit. Retrieved 2023-08-15, from https://www .3dwasp.com/en/maker-economy-starter-kit/

    WASP. (2018a). The orthopedic corset 3d printed in polypropylene. Retrieved 2023-08-15, from https://www.3dwasp.com/en/the-orthopedic-corset-3d -printed-in-polypropylene/

    WASP. (2018b). Trabeculae pavilion 3d printed by delta wasp. Retrieved 2023-08- 06, from https://www.3dwasp.com/en/trabeculae-pavilion-3d-printed -by-delta-wasp/

    WASP. (2021). Tecla. Retrieved 2023-08-06, from https://www.3dwasp.com/casa -stampata-in-3d-tecla/

    WASP. (2022). Tova is spain’s first 3d printed building with crane wasp. Retrieved 2023-08-06, from https://www.3dwasp.com/en/tova-3d-printed-building -with-crane-wasp/

    Weizmann, M., Amir, O., & Grobman, Y. J. (2017). Topological interlocking in architec ture: A new design method and computational tool for designing building floors. International journal of architectural computing, 15(2), 107–118. 181

    Whiting, E., Ochsendorf, J., & Durand, F. (2009). Procedural modeling of structurally sound masonry buildings. In Acm siggraph asia 2009 papers (pp. 1–9).

    Wight, J. K., & MacGregor, J. G. (2016). Reinforced concrete. Pearson Education UK.

    Xometry, T. (2022). 4 types of metal 3d printing processes and their materi als. Retrieved 2023-08-19, from https://www.xometry.com/resources/3d -printing/types-of-metal-3d-printing/

    Yan, D.-M., Wang, W., Lévy, B., & Liu, Y. (2010). Efficient computation of 3d clipped voronoi diagram. In Gmp (Vol. 10, pp. 269–282).

    Zheng, H., Darweesh, B., Heewon, L., & Li, Y. (2019). Caterpillar: A gcode translator in grasshopper. In 24th annual conference of the association for computer-aided architectural design research in asia (caadria 2019): Intelligent & informed (pp. 253–262).

    QR CODE