簡易檢索 / 詳目顯示

研究生: 朱家緯
Chia-Wei Chu
論文名稱: DLP型大面積高速3D列印成型平台受力曲線分析以決定列印參數於牙模之生產
Analysis of the Platform Loading Curve to Determine Printing Parameters in DLP-type Large-area High-speed 3D Printing for Dental Model Production
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 蔡明忠
Ming-Jong Tsai
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 148
中文關鍵詞: 隱形牙套DLP型大面積高速3D列印受力曲線分析
外文關鍵詞: DLP type large-area high-speed 3D print
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製作隱形牙套所使用的牙模需求越來越高,傳統使用SLA技術會造成樹脂浪費以及速度較慢的問題。而下照式DLP技術能同時改善這兩個問題,但是一般DLP機台受限於分離力問題因此設計的較小台導致不利於量產。本研究的目的為使用抑制薄膜的高速列印技術,利用創造死區的方式降低分離力,結合大面積的DLP機台提升產量,將其應用於牙模的量產,並對列印的成功率及速度進行探討。
    本研究搭建了DLP型大面積高速3D列印機台,於抑制薄膜上進行不同參數的列印測試,透過對3個不同區段的受力曲線分析,將參數對曲線的影響找出。過程中發現其失敗原因為樹脂排不出造成槽底形變導致平台與槽底間距不正確所造成,透過提升間距的校正方式可以有效改善樹脂排不出的問題,再搭配多孔板的使用可以更快的排出堆積的樹脂,使成功率由80%提升至接近100%。另外本研究透過對受力曲線的分析,制定出參數的修改策略,透過4個步驟即可找到穩定且快速的列印參數,利用不同層數對應不同參數的方式,將24個牙模的列印時間減少50%。


    The demand for dental molds used to make invisible braces is increasing. The traditional use of SLA technology will cause resin waste and slower speed. The down-illuminated DLP technology can improve these two problems at the same time, but the general DLP machine is limited by the separation force problem, so the small design of the machine is not conducive to mass production. The purpose of this research is to use the high-speed printing technology , reduce the separation force by creating a dead zone, and combine it with a large-area DLP machine to increase the output, apply it to the mass production of dental molds, and to improve the printing success Rate and speed are discussed.
    In this study, a DLP type large-area high-speed 3D printer was built, and the printing test of different parameters use the high-speed printing technology. Through the analysis of the force curve of 3 different sections, the influence of the parameters on the curve was found. During the process, it was discovered that the reason for the failure was that the resin could not be discharged and the groove bottom deformed and the distance between the platform and the groove bottom was incorrect. The correction method of increasing the distance can effectively improve the problem of resin not being discharged, and the use of a perforated plate can be more Quickly discharge the accumulated resin, which increases the success rate from 80% to nearly 100%. In addition, this research has worked out a parameter modification strategy through the analysis of the force curve. Stable and fast printing parameters can be found in 4 steps. Different layers correspond to different parameters, and the rows of 24 dental molds Printing time is reduced by 50%.

    目錄 摘 要 圖目錄 表目錄 第1章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究方法 1.4 論文架構 第2章 文獻探討 2.1 積層製造技術 2.1.1 積層製造技術簡介 2.1.2 光聚合固化技術 2.2 隱形牙套製造方法 2.3 下照式光固化成型高速列印技術 2.3.1 連續液體介面生產技術 2.3.2 連續數字光製造 2.3.3 智能流體界面技術 2.3.4 大面積快速列印技術 2.3.5 台科大DLP型高速列印技術 2.3.6 各項高速列印技術之比較 2.4 下照式3D列印技術分離力相關研究 2.5 本實驗室相關研究回顧 第3章 實驗設備與材料介紹 3.1 下照式DLP型大面積3D列印機 3.1.1 4K投影機 3.1.2 反射鏡 3.1.3 Z軸模組 3.1.4 荷重元 3.1.5 控制軟體 3.2 實驗材料 3.3 樹脂材料槽 第4章 平台受力曲線與失敗原因探討 4.1 列印參數對成型平台受力曲線之影響 4.1.1 成型平台受力曲線分析方法 4.1.2 不同參數所對應之平台受力曲線 4.1.3 不同參數對曲線之影響整理 4.2 列印失敗原因探討與解決 4.2.1 列印失敗原因 4.2.2 下壓力的解決方案 4.2.3 下壓力的解決方案測試 第5章 平台受力曲線分析應用於列印參數設計 5.1 利用受力曲線修改參數流程 5.1.1 穩定度參數尋找 5.1.2 速度參數尋找 5.1.3 結果與討論 5.2 多段式參數的列印策略 5.2.1 三段式參數列印測試 5.2.2 結果與討論 5.3 不同樹脂材料測試 5.3.1 實驗材料 5.3.2 參數尋找流程 5.3.3 結果與討論 第6章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

    [1] Gianluca, M.T., Mapelli, A., Maspero, C., Santaniello, T., Serafin, M., Farronato, M., Caprioglio,A. (2021). Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials , 14(7). doi: 10.3390/ma14071799
    [2] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Samulski, E.T. (2015). Continuous Liquid Interface Production of 3D Objects. Science, 347(6228), 1349-1352. doi: 10.1126/science.aaa2397
    [3] 鄭正元、鄭逸琳、陳定閒、陳貞佑, 降低光固化材料成型過程的拉拔力之方法, TWI660830
    [4] Jeng, J.Y., Cheng, Y.L., Chen, D.S., Chen, Z.Y., Method For Reducing Drawing Force in Forming Process of Photocurable Material., U.S. Patent 10,967,563 B2, April 06, 2021
    [5] Stratasys News & Events, https://investors.stratasys.com/news-events/press-releases/detail/390/stratasys-debuts-a-new-dental-3d-printer-for-orthodontics
    [6] Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive Manufacturing Technologies. Vol. 238. New York: Springer
    [7] ASTM F2792 Standard Terminology for Additive Manufacturing Technologies
    [8] Rau, D.A., Forgiarini, M.,Williams, C.B. (2021). Hybridizing Direct Ink Write and Mask-projection Vat Photopolymerization to Enable Additive Manufacturing of High Viscosity Photopolymer Resins. Additive Manufacturing, 42, doi: 10.1016/j.addma.2021.101996
    [9] Saleem, H., Gilmar, F.B., Van Tyne, C.J., Yilbas, B.S. (2014). Comprehensive Materials Processing. Oxford: Walltham, MA.
    [10] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,鄭中緯,宋宜駿,陳怡文,賴信吉,吳貞興,許郁淞,陳宇恩,2017年, “3D列印積層製造技術與應用” 全華圖書出版社
    [11] T. Instruments, DLP® technology http://e2e.ti.com/blogs_/b/enlightened/archive/2016/10/06/the-pioneering-work-that-led-to-the-dmd
    [12] Muhammad, C., Apostolos, L., Brian, F., Kelsey, W., Richard R., Method and System for Incrementally Moving Teeth., U.S. Patent 5,975,893 A, November 2,1999
    [13] Quintanilla, A.L., Mecham, S.J., Desimone, J.M., Tumbleston, J.R., Janusziewicz, R. (2016). Layerless Fabrication with Continuous Liquid Interface Production. Proceeding of the National Academy of Sciences of the United States of America, 113(42), 11703–11708. doi: 10.1073/pnas.1605271113
    [14] Alexandr, S., Ali, E., Hendrik, J., Continuous Generative Process for Producing a Three-Dimensional Object., U.S. Patent 7,892,474 B2, February 22, 2011
    [15] Newpro3d, https://newpro3d.com/ili-technology/
    [16] Nexa3d LSPc, https://www.dynamism.com/nexa-vs-carbon3d.html
    [17] Luciano, T., Andrea, D., Gianni, Z., Method and Apparatus for Photo-curing with Self-lubricating Substratum for the Formation of Three-dimensional Objects, U.S. Patent 10,357,919 B2, July 28, 2019
    [18] Walker, D.A.,Hedrick, J.L.,Mirkin, C.A. (2019). Rapid, Large-volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface. Science, 366(6463), 360-364. doi: 10.1126/science.aax1562
    [19] Huang, Y.M., Jiang, C.P. (2005). On-line Force Monitoring of Platform Ascending Rapid Prototyping System. Journal of materials processing technology, 159(2), 257-264. doi: 10.1016/j.jmatprotec.2004.05.015
    [20] Liravi, F., Das, S., Zhou, C. (2015). Separation Force Analysis and Prediction Based on Cohesive Element Model for Constrained-surface Stereolithography Processes. Computer-Aided Design, 69, 134–142. doi: 10.1016/j.cad.2015.05.002
    [21] Pan, Y., He, H., Xu, J., Feinerman, A. (2017). Study of Separation Force in Constrained Surface Projection Stereolithography. Rapid Prototyping Journal, 23(2), 353-361. doi: 10.1108/RPJ-12-2015-0188
    [22] Wang, Q., Sun, Y., Guo, B., Li, P., & Li, Y. (2019). CFD Analysis and Prediction of Suction Force During the Pulling-up Stage of the Continuous Liquid Interface Production Process. AIP Advances, 9(1). doi: 10.1063/1.5080516
    [23] 陳貞佑,2019,“下照式DLP高速3D列印失敗因子之探討”,國立臺灣科技大學碩士論文。
    [24] 陳柏源,2020,“DLP型高速列印大面積樹脂回流之探討”,國立臺灣科技大學碩士論文。
    [25] 林宇沐,2020,“DLP型3D列印彈性樹脂之探討”,國立臺灣科技大學碩士論文。
    [26] 揚明光學YOUNG Optics. https://www.youngoptics.com/
    [27] Edmund Optics 平面反射鏡, https://www.edmundoptics.com.tw/p/169-x-194mm-4-6lambda-mirror/4674/
    [28] 至衡實業有限公司, https://www.accus.com.tw/product-ARI630D-ARI630D.html
    [29] Phrozen 標準樹脂 - ABS Like 奶油白樹脂, https://www.phrozen3dp.com/products/phrozen-resin-abs-like-creamy-white

    無法下載圖示 全文公開日期 2024/09/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE