簡易檢索 / 詳目顯示

研究生: 徐少駒
Shao-chu Hsu
論文名稱: 在不同背壓條件下非傳輸型井式陰極直流空氣電漿火炬內部流場模擬
Air Plasma Flow Simulation inside a Non-Transferred Well-Type Cathode Direct Current Torch at Different Pressures
指導教授: 趙修武
Shiu-wu Chau
口試委員: 陳孝輝
Shiaw-huei Chen
陳品銓
Pin-chuan Chen
許坤霖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 197
中文關鍵詞: 背壓非傳輸型井式火炬空氣電漿火炬數值模擬
外文關鍵詞: Back Pressure, Non-transferred Well-type Torch, Air Plasma Torch, Numerical Simulation
相關次數: 點閱:133下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在假設二維軸對稱及穩態的條件下進行非傳輸型井式陰極直流空氣電漿火炬流場模擬分析,利用有限體積法聯立求解連續方程式、電流連續方程式、動量方程式、能量方程式與紊流模型,流場內的電流分布利用安培定律求得,而流場內的磁場大小則是利用歐姆定律決定,藉此分析電漿火炬內部電漿氣體流場基本特性。本研究基於給定陰極弧根位置以及非均勻分布電流密度,利用實驗電壓值進行陽極位置的估算,並比較在不同壓力下流量與電流對流場特性的影響。本研究中所使用的工作壓力為1 bar、2 bar及3 bar,空氣流量範圍為100 L/min至200 L/min間,工作電流範圍為100 A至200 A間。計算結果顯示陰極最大電流密度大約介於 A/m2與 A/m2間,電弧長度範圍約在90至270 mm間,出口處平均溫度範圍約在3000 K至6500 K間,出口處平均軸向速度範圍約在20 m/s至500m/s間,出口處平均旋向速度範圍約在1 m/s至90m/s間。


    Based on steady and axis-symmetric assumptions, the continuity equation, current continuity equation, momentum equations and energy equation incorporated with the turbulence model are solved in this study by using a finite volume discretization in a segregated manner. The current distribution in the flow field is calculated by the Ampere's law and the magnetic field in space is predicted by the Ohm's law. For given anode position and assuming non-uniform current density at the cathode, the cathode spot is determined by fixing the measured voltage in the expreiments. The plasma flow in the region of pressure varing from 1 bar to 3 bars is calculated, where the flowrate increases from 100 L/min to 200 L/min and the working current ranging from 100 A to 200 A. The numerical results suggest that in the investigated cases, the maximum current density changes from A/m2 to A/m2, the arc length varies from 90 to 270 mm, the average temperature of the torch outlet alters from 3000 K to 6500 K, the average axial velocity of the torch outlet fluctuates from 20 m/s to 500 m/s and the average rotating velocity of the torch outlet varies from 1 m/s to 90 m/s.

    符號表 VII 圖目錄 XII 表目錄 XXIII 第一章 緒論 1-1 研究動機與目的 1-2 文獻回顧 第二章 數學模型與數值方法 2-1 流場統御方程式 2-2 數值離散方法 2-3 計算區間分割之平行化 2-4 流場計算流程 第三章 計算模型與參數 3-1 火炬幾何尺寸 3-2 流場邊界條件 3-3 流場網格模型 3-4 空氣電漿物理特性 3-5不同壓力下火炬操作特性 第四章 結果分析 4-1 確定陰極最大電流密度與電弧長度 4-2流量為100 L/min並在不同壓力條件下流場特性 4-2-1固定流量與電流條件下壓力對流場特性的影響 4-2-2流量為100 L/min與電流100 A條件下壓力對流場特性的影響 4-2-3流量為100 L/min與電流120 A條件下壓力對流場特性的影響 4-2-4流量為100 L/min與電流140 A條件下壓力對流場特性的影響 4-2-5流量為100 L/min與電流160 A條件下壓力對流場特性的影響 4-2-6流量為100 L/min與電流180 A條件下壓力對流場特性的影響 4-2-7流量為100 L/min與電流200 A條件下壓力對流場特性的影響 4-3流量為120 L/min並在不同壓力條件下流場特性 4-3-1流量為120 L/min與電流100 A條件下壓力對流場特性的影響 4-3-2流量為120 L/min與電流120 A條件下壓力對流場特性的影響 4-3-3流量為120 L/min與電流140 A條件下壓力對流場特性的影響 4-3-4流量為120 L/min與電流160 A條件下壓力對流場特性的影響 4-3-5流量為120 L/min與電流180 A條件下壓力對流場特性的影響 4-3-6流量為120 L/min與電流200 A條件下壓力對流場特性的影響 4-4流量為140 L/min並在不同壓力條件下流場特性 4-4-1流量為140 L/min與電流100 A條件下壓力對流場特性的影響 4-4-2流量為140 L/min與電流120 A條件下壓力對流場特性的影響 4-4-3流量為140 L/min與電流140 A條件下壓力對流場特性的影響 4-4-4流量為140 L/min與電流160 A條件下壓力對流場特性的影響 4-4-5流量為140 L/min與電流180 A條件下壓力對流場特性的影響 4-4-6流量為140 L/min與電流200 A條件下壓力對流場特性的影響 4-5流量為160 L/min並在不同壓力條件下流場特性 4-5-1流量為160 L/min與電流100 A條件下壓力對流場特性的影響 4-5-2流量為160 L/min與電流120 A條件下壓力對流場特性的影響 4-5-3流量為160 L/min與電流140 A條件下壓力對流場特性的影響 4-5-4流量為160 L/min與電流160 A條件下壓力對流場特性的影響 4-5-5流量為160 L/min與電流180 A條件下壓力對流場特性的影響 4-5-6流量為160 L/min與電流200 A條件下壓力對流場特性的影響 4-6流量為180 L/min並在不同壓力條件下流場特性 4-6-1流量為180 L/min與電流100 A條件下壓力對流場特性的影響 4-6-2流量為180 L/min與電流120 A條件下壓力對流場特性的影響 4-6-3流量為180 L/min與電流140 A條件下壓力對流場特性的影響 4-6-4流量為180 L/min與電流160 A條件下壓力對流場特性的影響 4-6-5流量為180 L/min與電流180 A條件下壓力對流場特性的影響 4-6-6流量為180 L/min與電流200 A條件下壓力對流場特性的影響 4-7流量為200 L/min並在不同壓力條件下流場特性 4-7-1流量為200 L/min與電流100 A條件下壓力對流場特性的影響 4-7-2流量為200 L/min與電流120 A條件下壓力對流場特性的影響 4-7-3流量為200 L/min與電流140 A條件下壓力對流場特性的影響 4-7-4流量為200 L/min與電流160 A條件下壓力對流場特性的影響 4-7-5流量為200 L/min與電流180 A條件下壓力對流場特性的影響 4-7-6流量為200 L/min與電流200 A條件下壓力對流場特性的影響 第五章 火炬特性與操作參數的關係 5-1 電弧長度與電流和流量之關係 5-2 出口處平均溫度與電流和流量之關係 5-3 出口處平均軸向速度與電流和流量之關係 5-4 出口處平均旋向速度與電流和流量之關係 第六章 結論 參考文獻

    [1] 許坤霖,「基於軸對稱假設之直流電漿火炬數學模型建立與數值模擬」,中原大學機械工程系博士論文,2009。
    [2] Isam J., Syed S. R. and Arnar S. V., “Plasma Gasification Process: Modeling, Simulation and Comparison with Conventional Air Gasification,” Energy Conversion and Management, 2013, 65, 801-809.
    [3] Huang R., Fukanuma H., Uesugi Y. and Tanaka Y., “Simulation of Arc Root Fluctuation in a DC Non-Transferred Plasma Torch with Three Dimensional Modeling,” Journal of Thermal Spray Technology, 2012, 21(3), 636-643.
    [4] Selvan B., Ramachandran K., Sreekumar K. P., Thiyagarajan T. K. and Ananthapadmanabhan P. V., “Numerical and Experimental Studies on DC Plasma Spray torch,” Vacuum, 2010, 84, 444-452.
    [5] Rai P., Kim Y. S., Kang S. K. and Yu Y. T., “Synthesis of Nanosized Silicon Carbide Through Non-Transferred Arc Thermal Plasma,” Plasma Chem Plasma Process, 2012, 32, 211-218.
    [6] Anwari M., Takahashi S. and Harada N., “Performance Study of a Magnetohydrodynamic Accelerator using Air-Plasma as Working Gas,” Energy Conversion and Management, 2005, 46, 2605-2613.
    [7] Huang R., Fukanuma H., Uesugi Y. and Tanaka Y., “Comparisons of Two Models for the Simulation of a DC Arc Plasma Torch,” Journal of Thermal Spray Technology, 2012, 22(2), 183-191.
    [8] Huang R., Fukanuma H., Uesugi Y. and Tanaka Y., “An Improved Local Thermal Equilibrium Model of DC Arc Plasma Torch,” IEEE Transactions on Plasma Science, 2011, 39(10), 1974-1982.
    [9] Trelles J. P., Pfender E. and Heberlein J. V. R., “Thermal Nonequilibrium Simulation of an Arc Plasma Jet,” IEEE Transactions on Plasma Science, 2008, 36(4), 1026-1027.
    [10] Cheng K., Chen X. and Pan W., “Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics - A Modeling Study,” Plasma Chem Plasma Process, 2006, 26, 211-235.
    [11] Bauchire J. M., Gonzalez J. J. and Gleizes A., “Modeling of a DC Plasma Torch in Laminar and Turbulent Flow,” Plasma Chemistry and Plasma Processing, 1997, 17(4), 409-423.
    [12] Meillot E., Damiani D., Caruyer C., Vincent S. and Caltagirone J. P., “Diagnostic of Plasma Flow by Fast Imaging Visualization and by Numerical Simulation,” IEEE Transactions on Plasma Science, 2011, 39(11), 2330-2331.
    [13] Chen X. and Su B., “Laminar Flow and Heat Transfer in a Circular Tlibe Located behind a DC Arc Plasma Torch,” Tsinghua Science and Technology, 1997, 2(2), 608-612.
    [14] Kang K. D. and Hong S. H., “Arc Plasma Jets of a Nontransferred Plasma Torch,” IEEE Transactions on Plasma Science, 1996, 24(1), 89-90.
    [15] Yin F., Hu H., Yu C. and Li L., “Computational Simulation for the Constricted Flow of Argon Plasma Arc,” Computational Material Science, 2007, 40, 389-394.
    [16] Meillot E., Guenadou D. and Bourgeois D., “Three-Dimension and Transient D.C. Plasma Flow Modeling, ” Plasma Chem Plasma Process, 2008, 28, 69-84.
    [17] Trelles J. P. and Heberlein J. V. R., “Simulation Results of Arc Behavior in Different Plasma Spray Torches,” Journal of Thermal Spray Technology, 2006, 15(4), 563-569.
    [18] Trelles J. P., Pfender E. and Heberlein J., “Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch,” Plasma Chem Plasma Process, 2006, 26, 557-575.
    [19] Li H. P. and Pfender E., “Three-Dimensional Effects inside a DC Arc Plasma Torch,” IEEE Transactions on Plasma Science, 2005, 33(2), 400-401.
    [20] Lebouvier A., Delalondre C., Fresnet F., Boch V., Rohani V., Cauneau F. and Fulcheri L., “Three-Dimensional Unsteady MHD Modeling of a Low-Current High-Voltage Nontransferred DC Plasma Torch Operating with Air,” IEEE Transactions on Plasma Science, 2011, 39(9), 1889-1899.
    [21] Selvan B. and Ramachandran K., “Comparisons between Two Different Three-Dimensional Arc Plasma Torch Simulations,” Journal of Thermal Spray Technology, 2009, 18(5), 846-857.
    [22] Alves L. L., Alvarez R., Marques L., Rubio S. J., Rodero A. and Quintero M. C., “Modeling of an axial injection torch,” The European Physical Journal Applied Physics, 2009, 46, 1-10.
    [23] 趙修武,「電漿火炬之雙溫度運動模型探討及模擬」,行政院原子能委員會核能研究所委託研究計畫研究報告,2012。
    [24] 趙修武,「井式蒸氣火炬運轉機制之3D模擬研究」,行政院原子能委員會核能研究所委託研究計畫研究報告,2011。
    [25] Chau S. W., Lu S. Y. and Wang P. J., “Modeling of Axis-Symmetric Steam Plasma Flow in a Non-Transferred Torch,” Computer Physics Communications, 2011, 182, 152-154.
    [26] Chau S. W. and Hsu K. L., “Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver,” Computers and Fluids, 2011, 45, 109-115.
    [27] Chau S. W., Hsu K. L., Lin D. L., Chen J. S. and Tzeng C. C., “Modeling and Experimental Validation of a 1.2 MW DC Transferred Well-Type Plasma Torch,” Computer Physics Communications, 2007, 177, 114-117.
    [28] 呂紹陽,「非傳輸型井式直流水蒸氣電漿火炬內部流場模擬」,中原大學機械工程系碩士論文,2009。
    [29] Aubrecht V. and Bartlova M., “Net Emission Coefficient of Radiation in Air and SF6 Thermal Plasma,” Plasma Chem Plasma Process, 2009, 29, 131-147.
    [30] 林登連,陳孝輝,曾錦清,「非傳輸型直流電漿火炬在正壓環境下之操作特性研究」,行政院原子能委員會核能研究所研究報告,2012。

    QR CODE