簡易檢索 / 詳目顯示

研究生: 陳信智
Shin-Jr Chen
論文名稱: 不同爐石含量混凝土高溫後之工程性質
Engineering Properties of Concrete with Different Slag Replacements Exposed to Elevated Temperature
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 王鶴翔
none
黃然
Ran Huang
林宜清
Yi-Ching Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 97
中文關鍵詞: 高溫爐石非破壞試驗SASW數值模擬分析MASW
外文關鍵詞: elevated temperature, slag, NDT, SASW, numerical simulation analysis, MASW
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製作W/B=0.6 及不同爐石取代水泥量(10%, 30%, 40%, 60%, 80%)之圓柱混凝土,試體分別受高溫(200°C, 400°C, 600°C, 800°C)作用後,探討其工程性質(容積密度、超音波速、動態彈性模數、動態剪力模數、卜松比、熱傳導係數、抗壓強度)試驗,同時,利用數值模擬分析方式,探討敲擊回音頻率分析、表面波譜分析(SASW)及多頻道表面波分析(MASW)等三種方式對於評估高溫後層狀結構物損傷程度之適用性。
    研究結果顯示:(1) 當混凝土中爐石取代水泥量為30%時,在常溫狀態下抗壓強度為33.78 MPa,高於控制組約5.40%;但在800 °C之後,其抗壓強度為4.14 MPa,高於控制組約20.35%,顯示適當的爐石取代量不僅不會減少其抗壓強度,在高溫後,更有較高的抵抗能力。(2) 利用非破壞檢測方式(超音波試驗、動態共振試驗、熱傳導試驗)所獲得混凝土工程性質,隨高溫之變化與抗壓強度隨溫度之變化有正比趨勢,因此利用非破壞試驗不僅可評估高溫後混凝土之強度,更可獲得其高溫後混凝土相關之工程性質。(3) 混凝土樑受高溫作用後,其結構內部超音波速隨著深度而增加,亦即是樑結構物呈現漸層的變化,因此可將高溫後混凝土樑視作一層狀結構物,此外,由於混凝土之熱傳導係數隨溫度增加而減少,因此高溫後混凝土樑承受高溫之損傷程度將比未損傷程度來得小。(4) 利用數值模擬探討三種非破壞檢測方式對於檢測雙層混凝土版損傷程度之適用性研究中,結果顯示:利用敲擊回音之頻率分析方式雖可測得損傷及未損傷之程度(深度),但卻無法反應出高溫後混凝土強度之漸層變化,因此若以SASW方法量測高溫後混凝土之損傷程度,便可呈現波速隨結構深度之變化,繼而利用MASW方法檢測之,不僅節省量測及分析時間,更可獲得較高品質之頻散曲線。


    In this study, various concrete cylindrical specimens with water-to-binder equal to 0.6 by different replacement content of cement with slag (0%, 10%, 30%, 60%, 80%) are mixed and exposed to specific elevated temperatures (200oC, 400oC, 600oC, 800oC ) in the furnace, respectively The engineering properties of specimens, such as bulk density (ρ), ultrasonic pulse velocity (UPV), dynamic modulus of elasticity (Ed), dynamic shear modulus (Gd), Poisson’s ratio (ν), thermal conductivity (λ) and compressive strength ( ) of specimens are tested after exposure to specific elevated temperatures. In the meantime, it also discusses the feasibility assessment that estimate the damage degree of concrete slab exposed to elevated temperature by using several numerical estimation methods such as impact-echo (IE) frequency analysis, spectral analysis of surface waves (SASW), and multi-channel analysis of surface waves (MASW).
    The results show as follows: (1) At room temperature, the compressive strength of replacement of cement with slag 30% is 33.78 MPa, it’s about 5.40% higher than mixture normal concrete (NC); at temperature of 800oC, the compressive strength is 4.14 MPa, it’s about 20.35% higher than NC. It indicates concrete adding with the appropriate slag replacements not only improves compressive strength but also has higher resistance at elevated temperature. (2) The engineering properties of concrete with temperature have the same trend with the compressive strength of concrete. Thus, the non-destructive testing (NDT) can not only estimate the strength of concrete but also obtain engineering properties of concrete exposed to elevated temperature. (3) The UPV of concrete beam specimens exposed to one-sided heating increases gradually with depth, so the specimen can be regarded as a graded layered structure. In addition, the reduction rate of thermal conductivity decreases with temperature such that the damage range of exposed to higher temperatures is smaller than that for lower temperatures. (4) The IE frequency analysis, SASW, and MASW methods are used to analyze on two-layered slabs. From comparing these results, although the frequency analysis can clearly identify the thickness of two layers in a slab, but it cannot accurately predict variations of P-wave velocity with depth. Consequently, measuring damage degree of concrete exposed to elevated temperature by SASW method can present the variation of p-wave velocity with depth. The MASW not only reduces measurement and analysis times but also obtains higher quality dispersive curve.

    ABSTRACT (in Chinese)......................................................i ABSTRACT (in English)......................................................ii ACKNOWLEDGEMENT............................................................iii CONTENTS...................................................................iv LISTS OF TABLES............................................................vii LISTS OF FIGURES...........................................................ix CHAPTER 1 INTRODUCTION....................................................1 CHAPTER 2 LITERATURE REVIEW...............................................4 2.1 THERMAL PROPERTY OF CONCRETE.........................................4 2.1.1 THERMAL PROPERTY OF CEMENT PASTE.................................4 2.1.2 THERMAL PROPERTY OF AGGREGATE....................................4 2.1.3 THERMAL CONDUCTIVITY.............................................4 2.1.4 SPECIFIC HEAT....................................................5 2.1.5 THERMAL DIFFUSIVITY..............................................6 2.1.6 THERMAL DEFORMATION..............................................6 2.2 EFFECTS OF SLAG ON PROPERTY OF CONCRETE..............................6 2.2.1 EFFECTS OF SLAG ON PROPERTY OF HARDENED CONCRETE.................6 2.2.2 EFFECTS OF SLAG ON PROPERTY OF CONCRETE EXPOSED TO ELEVATED TEMPERATURE......................................................7 2.3 STRESS WAVES.........................................................7 2.3.1 STRESS WAVES IN SOLIDS...........................................7 2.3.2 WAVE PROPAGATION.................................................7 2.4 IMPACT-ECHO METHOD...................................................8 2.4.1 DEVELOPMENT HISTORY OF IMPACT-ECHO METHOD........................8 2.4.2 GENERATATION OF IMPACT...........................................8 2.4.3 FREQUENCY ANALYSIS OF RESPONSES..................................9 2.4.4 PHYSICAL BEHAVIOR OF STRESS WAVES AT INTERFACE...................10 2.4.5 ACOUSTIC IMPEDANCE...............................................10 2.4.6 REFLECTION AND REFRACTION AT INTERFACE...........................11 2.5 SPECTRAL ANALYSIS OF SURFACE WAVES................................. 12 2.5.1 BACKGROUND.......................................................12 2.5.2 SIGNAL MEASUREMENT...............................................13 2.5.3 COMPUTATION OF DISPERSION CURVE..................................13 2.5.4 INVERSION ANALYSIS...............................................14 2.5.5 MASW METHOD......................................................14 CHAPTER 3 RESEARCH PROGRAM ................................................28 3.1 INTRODUCTION.........................................................28 3.2 MATERIALS............................................................28 3.3 EQUIPMENTS...........................................................29 3.3.1 EXPRIMENT OF CONCRETE EXPOSED TO ELEVATED TEMPERATURE............29 3.3.2 NONDESTRUCTIVE TESTING...........................................30 3.3.3 MAJOR SOFTWARES..................................................32 3.4 MIXTURE PROPORTIONING................................................33 3.5 EXPRIMENTAL PROCEDURE FOR ELEVATED TEMPERATURE.......................33 3.5.1 CYLINDRICAL SPECIMENS............................................33 3.5.2 CONCRETE BEAM SPECIMENS..........................................34 CHAPTER 4 EXPRIMENTAL RESULTS AND DISCUSSION..............................46 4.1 INTRODUCTION.........................................................46 4.2 RESIDUAL STRENGTH OF CEMENT PASTE EXPOSED TO ELEVATED TEMPERATURE....46 4.3 ENGINEERING PROPERTIES OF CONCRETE EXPOSED TO ELEVATED TEMPERATURE...47 4.3.1 ULTRASONIC PULSE VELOCITY........................................48 4.3.2 DYNAMIC MODULUS..................................................49 4.3.3 THERMAL CONDUCTIVITY.............................................50 4.3.4 RESIDUAL STRENGTH................................................51 4.4 ULTRASONIC PULSE VELOCITY OF CONCRETE BEAM SPECIMENS EXPOSED TO ELEVATED TEMPERATURE.................................................52 CHAPTER 5 NUMERICAL SIMULATION ANALYSIS...................................71 5.1 INTRODUCTION.........................................................71 5.2 FREQUENCY ANALYSIS...................................................72 5.2.1 PREPROCESSING....................................................72 5.2.2 FREQUENCY ANALYSIS...............................................73 5.2.3 EFFECT OF DIFFERENT ACOUSTIC-IMPEDANCE RATIOS....................73 5.2.4 EFFECT OF DIFFERENT THICKNESS RATIOS.............................74 5.3 SASW AND MASW METHODS................................................75 5.3.1 COMPUTATION PROCESS..............................................75 5.3.2 NUMERICAL SIMULATION RESULTS.....................................76 5.4 SUMMARY..............................................................77 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS.....................................92 6.1 CONCLUSIONS..........................................................92 6.2 SUGGESTIONS..........................................................93 REFERENCES...............................................................95

    1.Czernin, W., Cement Chemistry and Physics for Civil Engineers, New York: Chemical Publishing Co., Inc. (1980).
    2.The Institution of Structural Engineers and the Concrete Society, Fire Resistance of Concrete Structures, London, U.K. (1975).
    3.Lea, F.-M., The Chemistry of Cement and Concrete, 3rd Edition, London, U.K.: Edward Arnold Ltd. (1970).
    4.Ei-Jazairi, B. and Illston, J.M., ‘The Hydration of Cement Paste Using the Semi-Isothermal Method of Derivative Thermogravimetry,’ Cement and Concrete Research, Vol. 10, No. 3, pp. 361-366 (1980).
    5.Chang, C.-Y., The Study of Common Cement with Blast Furnace Clinker on Hydrate Mechanism, Master Thesis, National Taiwan University of Science and Technology (1987). (in Chinese)
    6.Su, N., The Study of Coarse Aggregate at Major River in Taiwan Midland and North on Microstructure, Macro Properties and Compressive Strength Quality of Concrete, Master Thesis, National Taiwan University of Science and Technology (1987). (in Chinese)
    7.Mehta, P.K., Concrete Structure, Properties and Materials, Englewood Cliffs, New Jersey: Prentice-Hall, Inc. (1986).
    8.Chang, C.-F., Thermal Conductive Property of High Performance Concrete, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (1995). (in Chinese)
    9.Hirth, H.C., Thermal Properties of Concrete at Extreme Temperatures, Ph.D. Dissertation, The University of California, Berkeley California (1982).
    10.Mindess, S. and Young, J.F., Concrete, Englewood Cliffs, New Jersey: Prentice-Hall Inc. (1981).
    11.Neville, A.M., Property of Concrete, 3rd Edition, London, U.K.: Pitman Publication Ltd. (1986).
    12.Brown, T.D., and Javaid, M.Y., ‘The Thermal Conductivity of Fresh Concrete,’ Materials and Structures, Vol. 3, No. 18, pp. 411-416 (1970).
    13.Wei, S.-S., Thermal Conductive Property of Ordinary Performance Concrete, Master Thesis, Chung Yuan Christian University, Taoyuan, Taiwan (2003). (in Chinese)
    14.Cheng, Y.-J., Effect of Pozzolanic Materials and Fine Aggregate on the Thermal Conductivity of Cement Paste, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2002). (in Chinese)
    15.Abrams, M.S., ‘Compressive Strength of Concrete at Temperatures to 1600F,’ Temperature and Concrete, American Concrete Institute SP-25, Detroit, Michigan : pp. 33-58 (1971).
    16.Huang, C.-L., Quality and Behavior of Concrete, Taipei, Taiwan: Chan’s Publishing (1997).
    17.Chen, J.-C., Effects of Partial Replacement of Cement by Slag on the Rheological Property and Workability of Flowable Concrete, Master Thesis, National Chung Hsing University, Taichung, Taiwan (2002). (in Chinese)
    18.Chu, H.-L., ‘Discuss the Fire-Resistant Property Estimate of Concrete,’ Taiwan Civil Technician Paper, No. 237, p. 5 (2001). (in Chinese)
    19.Peiwei, G., Min, D. and Naiqian, F., ‘The Influence of Superplasticizer and Superfine Mineral Powder on the Flexibility, Strength and Durability of HPC,’ Cement and Concrete Research, Vol. 31, No. 5, pp. 703-706 (2001).
    20.Public Construction Commission, Handbook: Directory of Slag Concrete at Public Construction (2001), Taipei, Taiwan. (in Chinese)
    21.Wen, K.-L., Hardened Properties and Thermal Conduction of Concrete with Fly Ash and Slag Additions under High Ambient Temperature, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2006). (in Chinese)
    22.Wang, H.-Y., ‘The Effects of Elevated Temperature on Cement Paste Containing GGBFS,’ Available online in Cement and Concrete Composites (2007).
    23.Chang, H.-Y., Study on Behavior of Wave Propagation and Material properties of Layered Concrete Plate, Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan (2004). (in Chinese)
    24.Sansalone, M. and Carino, N.J., Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves, National Bureau of Standards Report, NBSIR, No. 86-3452, Gaithersburg, Maryland: National Bureau of Standards, p. 222 (1986).
    25.Carino, N.J. and Sansalone, M. Pulse-Echo Method for Flaw Detection in Concrete, Technical Note 1199, Gaithersburg, Maryland: National Bureau of Standards (1984).
    26.Carino, N.J., Sansalone, M., and Hsu, N.N., ‘Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms,’ in International Advances in Nondestructive Testing, 12th Edition, McGonnagle, W.J. Ed., New York: Gordon and Breach Science Publishers, pp. 117-146 (1986).
    27.Cheng, C. and Sansalone, M., ‘The Impact-Echo Response of Concrete Plates Containing Delaminations-Numerical, Experimental, and Field Studies,’ Materials and Structures, Vol. 26, No. 5, pp. 274-285 (1993).
    28.Sansalone, M. and Carino, N.J. ‘Detecting Delaminations in Reinforced Concrete Slabs with and without Asphalt Concrete Overlays Using the Impact-Echo Method,’ Materials Journal of the American Concrete Institute, Vol. 86, No. 2, pp. 175-184 (1989).
    29.Lin, Y. and Su, W.-C., ‘Use of Stress Waves for Determining the Depth of Surface-Opening Cracks in Concrete Structures,’ Materials Journal of the American Concrete Institute, Vol. 93, No. 5, pp. 494-505 (1996).
    30.Lin, Y., Liou, T. and Hsiao, C., ‘Influences of Reinforcing Bars on Crack Depth Measurement by Stress Waves,’ Materials Journal of the American Concrete Institute, Vol. 95, No. 4, pp. 407-418 (1998).
    31.Lin, Y., Influence of Internal Steel in Concrete on Crack Depth Measured, Project Report, NSC 86-2621-P-005-007, Taipei, Taiwan: National Science Council (1997). (in Chinese)
    32.Kino, G.S., ‘Acoustic Waves: Device, Imaging, and Analog Signal Processing,’ Journal of the Acoustical Society of America, Vol.71, No.5, pp. 1163-1168 (1982).
    33.Sansalone, M., Impact: The Theory and Physical Behavior of Colliding Solid, London, U.K.: Edward Arnold Ltd., pp. 82-90 (1960).
    34.Sansalone, M. and Pratt, G.D., Theory and Operation Manual for the Impact-Echo Field System, Department of Civil and Environmental Engineering, Report No. 92-2, Ithaca, New York: Cornell University (1992).
    35.Chou, Z. W., The Application of SASW Method on the Evaluation of Shear Wave Velocity of Soils, Master Thesis, National Cheng-Kung University, Tainan, Taiwan (2006). (in Chinese)
    36.Kim, D.S., Seo, W.S., and Lee, K.M., ‘IE–SASW Method for Nondestructive Evaluation of Concrete Structure,’ NDT&E International, Vol. 39, No. 2, pp. 143-154 (2006).
    37.Chen, Y.-H., Higher and Lower Mode Method for Spectral Analysis of Surface Wave, Master Thesis, National Cheng-Kung University, Tainan, Taiwan (2005). (in Chinese)
    38.Chou, H.-H., Field Improvement and Case Study of MASW Method, Master Thesis, National Chiao-Tung University, Hsinchu, Taiwan (2005). (in Chinese)

    無法下載圖示 全文公開日期 2013/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE