簡易檢索 / 詳目顯示

研究生: 曾奕鈞
Yi-Chung Tseng
論文名稱: 碳化矽晶圓的非破壞性檢測方法對於晶圓缺陷之成像分析
The Analyzation about Defects in Silicon Carbide Wafer via Non-Destructive Testing Ways
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-Hua Hsieh
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 115
中文關鍵詞: 碳化矽晶圓晶圓非破壞性檢測種類晶圓無損檢測4H碳化矽晶圓缺陷檢測方法分析晶圓檢測發展
外文關鍵詞: silicon carbide wafer, wafer non-destructive testing, wafer NDT,, 4H-SiC wafer defects, inspection analyze, development of wafer inspection
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽是製造高功率半導體元件之重要的寬能隙(WBG)半導體材料,然而在晶圓的製造與加工過程當中,容易使晶圓產生缺陷進而影響製成元件之性能,對於碳化矽或矽晶圓質量有負面的影響,因此需要晶圓檢測找出並定義晶圓缺陷以利分析形成缺陷的原因與造成的危害。
    本研究將檢測晶圓方法分為破壞性與非破壞性檢測兩者並將焦點放在晶圓的非破壞性檢測,分別探討各檢測方法之成像原理、缺陷分辨能力以及其他領域應用,同時將非破壞性檢測與破壞性檢測方法 KOH 相比,討論兩者檢測的便利性、檢測時間、辨別缺陷的難易度等問題以及探討兩種方法的優劣。除了討論晶圓檢測技術以及缺陷的分析,也統計各國發表的相關文獻數量與各國的檢測技術發展和技術落點。最後說明當前檢測技術遇到的瓶頸和困難,並基於目前理論的檢測方法配合現今的科技發展,討論將人工智慧(AI)融入晶圓檢測的方法,擬定未來在晶圓非破壞性檢測發展的可能。


    Silicon carbide is a crucial wide band gap (WBG) material for manufacturing the highpower device. However, it is easy to induce defects while wafer under manufacturing and processing, it will cause some harmful effects to device. Also bad for Si or SiC wafer’s quality. Thus, the requirement of defects inspection, definition for analyzing the disadvantage, and the reason of defects become more important.
    The research places wafer inspection ways in two categories, which are destructive testing (DT) and non-destructive testing (NDT). Especially focus on the latter. To discuss the NDT image-forming principle, the ability of defects resolution and other applications respectively. Moreover, comparing wafer NDT and destructive way (KOH) in order to discussing the convenience, inspecting time, the degree of difficulty to distinguish defects in inspection methods, and illustrating the pros and cons.
    In addition to the wafer inspection methods and defects analyzation, the research shows the related researches presented from various countries, the development of inspection methods, and the technical placement around the world. Finally, to elaborate the current difficulties of wafer inspection techniques, and to discuss the combination wafer NDT ways with AI which based on current inspection skills and possible development of wafer NDT methods in coming research.

    摘要 II ABSTRACT III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 一、緒論 1 1-1 引言 1 1-2 研究動機 1 1-3 檢測的分類方法 2 1-4 論文架構 4 二、文獻回顧 5 2-1 晶圓製造 5 2-1-1 碳化矽晶體生長 5 2-1-2 碳化矽晶錠的製造 10 2-2 晶圓檢測 17 2-2-1 破壞性檢測 18 2-2-2 非破壞性檢測(無損檢測) 18 2-3 晶圓缺陷 19 2-3-1 晶體缺陷 20 2-3-2 晶圓表面缺陷 23 2-3-3 磊晶缺陷 25 2-4 高溫蝕刻法(KOH蝕刻法) 27 三、非破壞性的晶圓檢測方法 30 3-1 晶圓質量 30 3-2 非破壞性檢測種類 31 3-2-1 X-Ray(X射線)檢測 31 3-2-2 雷射光檢測 47 3-2-3 超音波檢測 61 3-2-4 Optical Coherence Tomography(OCT)檢測 72 3-2-5 其他非破壞性檢測方法 82 3-3 比較非破壞性檢測與高溫蝕刻法 88 四、晶圓的非破壞性檢測技術概況 96 4-1 研究數據和分法 96 4-1-1 創建資料集 96 4-1-2 晶圓缺陷的非破壞性檢測文獻數量 98 4-2 晶圓非破壞性檢測未來研究方向與發展 103 4-2-1 技術發展水平 104 4-2-2 理論研究水平 106 五、結論 108 5-1 研究的貢獻 108 5-2 避免個人觀點的偏見 109 5-3 訂定當前的技術發展趨勢 110 5-4 侷限性 110 參考文獻 111

    [1] Kim, J. G., et al., Identification of Polytype and Estimation of Carrier Concentration of Silicon Carbide Wafers by Analysis of Apparent Color using Image Processing Software. ECS Journal of Solid State Science and Technology, 2022. 11(6): p. 064003.

    [2] Wellmann, P., Power Electronic Semiconductor Materials for Automotive and Energy Saving Applications – SiC, GaN, Ga2O3, and Diamond. Zeitschrift für anorganische und allgemeine Chemie, 2017. 643.

    [3] Kearns, J. K., 2 - Silicon single crystals, in Single Crystals of Electronic Materials, R. Fornari, Editor. 2019, Woodhead Publishing. p. 5-56.

    [4] Kimoto, T., Bulk and epitaxial growth of silicon carbide. Progress in Crystal Growth and Characterization of Materials, 2016. 62(2): p. 329-351.

    [5] Wu, H., Wire sawing technology: A state-of-the-art review. Precision Engineering, 2016. 43: p. 1-9.

    [6] 福唐智能-激光加工-激光智能制造云商平台. 超薄晶圆“COLD SPLIT”技术SILTECTRA Wafering Services Business-超9亿RMB. 2019; Available.

    [7] Gao, S., et al., Grinding and lapping induced surface integrity of silicon wafers and its effect on chemical mechanical polishing. Applied Surface Science, 2022. 599: p. 153982.

    [8] Pei, Z. J., G. R. Fisher ,and J. Liu, Grinding of silicon wafers: A review from historical perspectives. International Journal of Machine Tools and Manufacture, 2008. 48(12): p. 1297-1307.

    [9] Kwon, T.-Y., M. Ramachandran ,and J.-G. Park, Scratch formation and its mechanism in chemical mechanical planarization (CMP). Friction, 2013. 1(4): p. 279-305.

    [10] Chen, P. C., et al., Defect Inspection Techniques in SiC. Nanoscale Res Lett, 2022. 17(1): p. 30.

    [11] Yang, J., et al., Characterization of morphological defects related to micropipes in 4H-SiC thick homoepitaxial layers. Journal of Crystal Growth, 2021. 568-569: p. 126182.

    [12] Inês Silva, M., et al., Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects. Progress in Materials Science, 2023: p. 101155.

    [13] Yu, M., et al., Ramification of micropipes in SiC crystals. Journal of Applied Physics, 2002. 92.

    [14] Liu, X. F., et al., Defect appearance on 4H-SiC homoepitaxial layers via molten KOH etching. Journal of Crystal Growth, 2020. 531: p. 125359.

    [15] Lee, S.-M. and Y.-W. Kim, Morphological characterization of 325 mesh-grinding-induced defects on silicon wafer surface. Microelectronics Reliability, 2022. 139: p. 114846.

    [16] Nakashima, S.-i., et al., Raman characterization of damaged layers of 4H-SiC induced by scratching. AIP Advances, 2016. 6(1): p. 015207.

    [17] Sasaki, M., et al., Synchrotron X-ray topography analysis of local damage occurring during polishing of 4H-SiC wafers. Japanese Journal of Applied Physics, 2015. 54(9).

    [18] Hassan, J., et al., Characterization of the carrot defect in 4H-SiC epitaxial layers. Journal of Crystal Growth, 2010. 312(11): p. 1828-1837.

    [19] Guo, J., et al., Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial. Journal of Crystal Growth, 2017. 480: p. 119-125.

    [20] Wang, H., et al. Micropipes in SiC Single Crystal Observed by Molten KOH Etching. Materials, 2021. 14, 10.3390/ma14195890: 10.3390/ma14195890.

    [21] Burgers vector. 2023 03/05/23; Available from: https://en.wikipedia.org/wiki/Burgers_vector.

    [22] 陈秀芳、崔潆心、于金英、胡小波、于国建、徐现刚、杨安丽、朱贤龙、魏学成、赵璐冰, 碳化硅晶片位错密度检测方法KOH 腐蚀结合图像识别法. 2021, 广州南砂晶圆半导体技术有限公司: 第三代半导体产业技术创新战略联盟. p. 5.

    [23] Hatakeyama, T., et al., Evaluation of the quality of commercial silicon carbide wafers by an optical non-destructive inspection technique. Journal of Crystal Growth, 2008. 310(5): p. 988-992.

    [24] 姚潔宜, X光的奇妙世界. 國家奈米元件實驗室奈米通訊, 2015. 22(1): p. 34-38.

    [25] Mattson, D. B. IMAGINE THE UNIVERSE. How do we know what we know? 2018; Available.

    [26] 梁老师. X射线衍射(XRD)摇摆曲线如何表征晶体生长质量. 測試分析技術 2021; Available.

    [27] 陳皇龍, X光機原理 輻射安全與防護. 2015: 國立中央大學. p. 34.

    [28] 李文元, 穿透式X光攝影, in 窺物誌. 2018, CHIMEI Museum.

    [29] Peng, H., et al., Synchrotron X-ray topographic characterization of dislocations in 6H-SiC axial samples. Journal of Crystal Growth, 2022. 579: p. 126459.

    [30] Haapalinna, A., S. Nevas ,and D. Pähler, Rotational grinding of silicon wafers—sub-surface damage inspection. Materials Science and Engineering: B, 2004. 107(3): p. 321-331.

    [31] Cheng, Q., et al., Characterization of Dislocations in 6H-SiC Wafer Through X-Ray Topography and Ray-Tracing Simulations. Journal of Electronic Materials, 2021. 50(7): p. 4104-4117.

    [32] Yamamoto, H., Assessment of stacking faults in silicon carbide crystals. Sensors and Materials, 2013. 25(3): p. 177-187.

    [33] 染料雷射器. 2022 5/16]; Available from: https://zh.wikipedia.org/zh-tw/%E6%9F%93%E6%96%99%E6%BF%80%E5%85%89%E5%99%A8.

    [34] 雷射的原理. 2023; Available from: https://www.keyence.com.tw/ss/products/marking/lasermarker/knowledge/principle.jsp.

    [35] 張守進、劉醇星、姬梁文, 半導體雷射. 科學發展, 2002. 349: p. 14-21.

    [36] 黃錦賢, 雷射加工能力本位訓練教材, in 認識雷射種類, 郭慶堂, Editor. 2001, 中華民國職業訓練研究發展中心: 行政院勞工委員會職業訓練局.

    [37] 莊一全、黃暉升、張憲彰, Laser Confocal Microscopy. 科儀新知, 2003. 24(6): p. 71-86.

    [38] 李承遠, 碳化矽基板碳包裹物衍生磊晶缺陷研究, in Mechanical Engineering. 2022, National Taiwan University of Science and Technology.

    [39] Wu, Y., 拉曼光譜儀的工作原理, in 高階儀器. 2019.

    [40] Wutimakun, P., C. Buteprongjit ,and J. Morimoto, Nondestructive three-dimensional observation of defects in semi-insulating 6H-SiC single-crystal wafers using a scanning laser microscope (SLM) and infrared light-scattering tomography (IR-LST). Journal of Crystal Growth, 2009. 311(14): p. 3781-3786.

    [41] Shioura, K., et al., Structural characterization of the grown crystal/seed interface of physical vapor transport grown 4H-SiC crystals using Raman microscopy and x-ray topography. Journal of Crystal Growth, 2019. 515: p. 58-65.

    [42] 共軛焦小組, LEICA Confocal Laser Scanning Microscope Technical & Application. 2000, Major Instruments Co., Ltd.: Major Instruments Co., Ltd. p. 29-31.

    [43] 超音波. 2022 3/16]; Available from: https://zh.wikipedia.org/zh-tw/%E8%B6%85%E8%81%B2%E6%B3%A2.

    [44] 洪瑞華、黃少華, New Helper of Nondestructive Measurement-Scanning Acoustic Microscope. 科儀新知, 2002. 130: p. 73-79.

    [45] Kim, T. H., et al. Through-Silicon via Device Non-Destructive Defect Evaluation Using Ultra-High-Resolution Acoustic Microscopy System. Materials, 2023. 16, 10.3390/ma16020860: 10.3390/ma16020860.

    [46] Chakrapani, S. K., M. J. Padiyar ,and K. Balasubramaniam, Crack Detection in Full Size Cz-Silicon Wafers Using Lamb Wave Air Coupled Ultrasonic Testing (LAC-UT). Journal of Nondestructive Evaluation, 2012. 31(1): p. 46-55.

    [47] 陳國智、張志華, 重點式超音波教學:活用手中探頭的6個技巧. 台灣急診醫學通訊, 2018. 1(2).

    [48] 高子承. 邁克森干涉儀. 2020; Available from: https://nckusec.web2.ncku.edu.tw/p/412-1071-1632.php?Lang=zh-tw.

    [49] Ma, P., et al., Three-dimensional detection and quantification of defects in SiC by optical coherence tomography. Applied Optics, 2020. 59(6): p. 1746-1755.

    [50] Huang, S.-L., Clinical Trends and Challenges of Optical Coherence Tomography. 科儀新知, 2020. 224.

    [51] Tachibana, K., et al., Smart optical measurement probe for autonomously detecting nano-defects on bare semiconductor wafer surface: Verification of proposed concept. Precision Engineering, 2020. 61: p. 93-102.

    [52] Jerjes, W., et al., In vivo optical coherence tomography in assessment of suspicious facial lesions: A prospective study. Photodiagnosis and Photodynamic Therapy, 2021. 36: p. 102493.

    [53] Yan, W., et al., Overcoming Limited Depth Penetration of Optical Coherence Tomography With Wire Bias. JACC: Cardiovascular Interventions, 2012. 5(1): p. e1-e2.

    [54] Gao, J., et al., Characterization of dislocation etch pits by molten KOH etching in n- and p-type 4H–SiC epilayers doped by ion implantation. Materials Science in Semiconductor Processing, 2023. 165: p. 107647.

    [55] Mat Jizat, J. A., et al., Evaluation of the machine learning classifier in wafer defects classification. ICT Express, 2021. 7(4): p. 535-539.

    無法下載圖示
    全文公開日期 2027/02/06 (校外網路)
    全文公開日期 2027/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE