簡易檢索 / 詳目顯示

研究生: 邱鈺雯
Yu-wen Chiou
論文名稱: 真實與人為分歧呼吸道內受重力影響之流場現象分析
Numerical simulations of respiratory phenomena in bifurcated lung artificial airways and real airways under gravity effect
指導教授: 陳明志
Ming-jyh Chern
口試委員: 林怡均
Yi-jyun Lin
張宏
Hung Zhang
吳銘庭
Ming-ting Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 172
中文關鍵詞: 支氣管截半氣管重力效應氧氣殘留率計算模擬
外文關鍵詞: lung, bronchial tree, half bronchial tree, gravity effect, the rate of remained oxygen, CFD
相關次數: 點閱:240下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究氣管內流場受重力及受傷切半後的影響, 我們利用數值方法模擬及探討
    其效應, 本研究分為三個部分: 第一, 完整的韋伯模型氣管和真實氣管在不同呼吸
    狀態下流場與氧氣殘留率的差異。第二, 經手術後截半氣管和完整氣管在不同呼
    吸狀態下的流場變化, 氧氣濃度分佈與氧氣殘留量。第三, 考慮重力效應, 觀察完
    整的韋伯模型氣管和真實氣管在不同呼吸狀態下, 呼吸流場、氧氣濃度以及氧氣
    殘留率的差異。
    我們觀察不同呼吸狀態下的氧氣殘留率發現, 若是增加吸入氣體的體積, 殘
    留的氧氣體積會增加。若是降低呼吸的頻率, 氧氣殘留率也會隨之增加。模擬完
    整韋伯模型氣管和真實氣管的氧氣殘留率發現, 真實氣管除了分歧區域和外側的
    迴流, 在管壁凹槽處的迴流會提高氧氣殘留率, 使得真實氣管的氧氣殘留率比韋
    伯模型氣管的氧氣殘留率高。比較術後截半與完整氣管的氧氣殘留率, 截半氣管
    的氧氣殘留率比完整氣管的氧氣殘留率差。在呼氣時, 有重力效應下的迴流區域
    比無重力影響下的大, 使氧氣不易隨呼氣的力量所帶走, 導致有重力效應下的氧
    氣殘留率比無重力影響下高。


    The aim of this study is to use numerical approaches to simulate flow patterns
    under the gravity effect and the influence of the bronchial tree.First,all of we analyze flow patterns under a variety of breathing conditions and evaluate the rate of remained oxygen in Weibel and real bronchial trees. Second,we compare flow patterns,the variations of oxygen and the rate of remained oxygen for whole and half bronchial trees after surgery. Third, we observe flow patterns, the variations of oxygen and the rate of remained oxygen under the gravity effect. We find that increasing respiratory volume can enhance the rate of remained volume of oxygen. However, decreasing breathing frequency may also improve the rate of remained oxygen. In addition to separation region in bifurcated area and the outside walls, cavities on inner walls of the real bronchial tree can capture more oxygen than a Weibel model. As a result, the rate of remained oxygen of the real bronchial tree is better than the Weibel bronchial tree. Comparison with whole and half bronchial trees after surgery, the rate of remained oxygen of the half bronchial tree is worse than the whole bronchial tree. At last, we find that the recirculation regions in the Weibel bronchial tree under gravity effect is larger than without gravity. Hence, the rate of remained oxygen of the bronchial tree with gravity is better than without gravity.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii 致謝....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 導論1 1.1 研究動機與研究目的. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 物理模型與數值方法7 2.1 氣管的幾何模型簡介和建構方法. . . . . . . . . . . . . . . . . . 7 2.2 數學模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 統御方程式. . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 初始及邊界條件. . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 流場參數之定義. . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 計算流體軟體之簡介及方法. . . . . . . . . . . . . . . . . . . . 13 2.4 數值模擬模式與參數設定. . . . . . . . . . . . . . . . . . . . . . 14 2.5 計算網格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 格點模型的建立. . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 網格獨立性與數值驗證. . . . . . . . . . . . . . . . . . . . . . . 17 2.7 實驗和數值運算的比較及討論. . . . . . . . . . . . . . . . . . . 18 2.8 氧氣殘餘率的評比. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 計算設備和時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.10 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 韋伯模型氣管與真實氣管在呼吸力學的基本探討21 3.1 呼吸力學的基本探討. . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 完整真實氣管和韋伯模型氣管的流場形態及氧氣殘留量之比 較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 就不同呼吸狀態下, 對於氧氣殘留率的影響. . . . . . . . . . . 25 3.4 就呼吸量對於氧氣殘留率的影響. . . . . . . . . . . . . . . . . . 26 3.5 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 截半韋伯和真實氣管內呼吸現象分析29 4.1 截半韋伯和真實氣管的探討. . . . . . . . . . . . . . . . . . . . 29 4.1.1 完整與截半韋伯模型氣管的流場型態及氧氣濃度比較. 31 4.1.2 完整與截半真實氣管的流場型態及氧氣濃度比較. . . 33 4.2 就截半式氣管探討不同呼吸狀態下, 對於氧氣殘留率的影響. 34 4.3 就截半式氣管探討不同呼吸量對於氧氣殘留率的影響. . . . . 35 4.4 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 5 重力效應對呼吸的影響39 5.1 流場型態及氧氣殘留量的比較與討論. . . . . . . . . . . . . . . 39 5.2 就不同呼吸狀態下, 對於氧氣殘留率的影響. . . . . . . . . . . .43 5.3 就呼吸量對於氧氣殘留率的影響. . . . . . . . . . . . . . . . . . 45 5.4 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 結論與建議.................................................................49 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49 6.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

    [1] Weibel, E.R., 1963, Morphometry of the Human Lung, Academic
    Press, New York, USA.
    [2] Pedley, T.J., 1977, Pulmonary fluid dynamics. Annual Review
    of Fluid Mechanics 9, 229-274.
    [3] Grotberg, J.B., 1994, Pulmonary flow and transport phenom-
    ena. Annual Review of Fluid Mechanics 26, 529-571.
    [4] Ukil, S. and Reinhardt, J.M., 2004, Smoothing lung segmenta-
    tion surfaces in 3D X-ray CT images using anatomic guidance.
    Proceedings of SPIE - The International Society for Optical En-
    gineering, Progress in Biomedical Optics and Imaging - Medical
    Imaging 2004: Imaging Processing 5370, 1066-1075, Interna-
    tional Society for Optical Engineering, Bellingham, WA 98227-
    0010, USA.
    [5] Kiraly, A.P., Higgins, W.E., Hoffman, E.A., McLennan, G. and
    Reinhardt, J.M., 2002, 3D human airway segmentation for vir-
    tual bronchoscopy. Physiology and Function From Multidimen-
    sional Images 4683, 16-29.
    [6] Aykac, D., Hoffman, E.A., McLennan, G. and Reinhardt, J.M.,
    2003, Segmentation and analysis of the human airway tree from
    tree-dimensional X-ray CT images. IEEE Transactions on Med-
    ical Imaging 22, 940-950.
    [7] Li, B.J., Christensen, G.E., Hoffman, E.A., McLennan, G. and
    Reinhardt, J.M., 2003, Establishing a normative atlas of the
    human lung: intersubject warping and registration of volumetric
    CT images. Academic Radiology 10, 255-265.
    [8] Yang, X.L., Liu, Y. and Luo, H.Y., 2006, Respiratory flow in
    obstructed airways. Journal of Biomechanics 39, 2743-2751.
    [9] Mochizuki, S., 2003, Convective mass transport during ventila-
    tion in a model of branched airways of human lungs. Proceedings
    of Pacific Symposium on Flow Visualization and Image Process-
    ing 4, Chamonix Mont-Blanc, France.
    [10] Horikomi, T. andWatanabe, T., 2003, Diffusion enhancement in
    high frequency ventilation(HFV) in a double-bifurcation airway
    model. Proceedings of Pacific Symposium on Flow Visualization
    and Image Processing 4, Chamonix Mont-Blanc, France.
    [11] Kim, J., Kawahashi, M. and Hirahara, H., 2007, Experimen-
    tal analysis of pendelluft aiflow generatedy by HFOV in hu-
    man. Proceedings of The Eighteenth International Symposium
    on Transport Phenomena, Daejon, Korea, 1330-1335.
    [12] Lee, W.J., Kawahashi, M. and Hirahara, H., 2006, Experimen-
    tal analysis of pendilluft flow generated by HFOV in a human
    airway model. Physiological Measurement 27, 661-674.
    [13] Burrowes, K.S., Hunter, P.J. and Tawhai, M.H., 2005, Inves-
    tigation of the relative effects of vascular branching structure
    and gravity on pulmonary arterial blood flow heterogeneity via
    an image-based computational model. Academic Radiology 12,
    1464-1474.
    [14] Schwartzstein, R.M. and Parker, M.J., 2006, Respiratory Phys-
    iology: A Clinical Approach. Lippincott Williams and Wilkins
    publisher, Philadelphia, USA, pp. 1-20.

    QR CODE