簡易檢索 / 詳目顯示

研究生: 許登坡
Teng-Po Hsu
論文名稱: 氮化鎵光電晶體之研發
Development of GaN-based phototransistors
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 氮化鎵光電晶體光偵測器紫外光光響應率
外文關鍵詞: Gallium nitride, phototransistor, sCollector-to-emitter voltage, High sensitivit, Ultra-violet
相關次數: 點閱:653下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用InGaN/GaN多重量子井主動層結構磊晶在圖形化藍寶石基板的晶圓,製作兩種不同種類的光偵測器,第一種為p-i-n結構光偵測器,第二種為n-p-i-n結構光電晶體光偵測器,後者使用矽擴散的方式將最上層p-GaN反轉為n-GaN。光電晶體的優點是可以產生增益,得到更高的外部量子效率。
p-i-n光偵測器的元件在逆向偏壓0 V、1.56 V、3.15 V、4.71 V下,當逆向偏壓為3.15 V,在峰值的外部量子效率為45%左右,對應的響應率約為0.14 A/W,峰值波長為383 nm,入射光強度(Pin)為15.74 μW/cm2,其截止波長約為415 nm。n-p-i-n光電晶體光偵測器的元件在集極外加偏壓時(對PIN接面為逆向偏壓),峰值波長為382 nm,入射光強度為15.55 μW/cm2,當逆向偏壓為1.56 V時,峰值的外部量子效率可以達到大於500%,對應的響應率大於1.8 A/W,可以偵測光對非偵測光拒斥比1000以上;當逆向偏壓為4.71 V時,峰值的外部量子效率更可以達到大於1800%,對應的響應率大於5 A/W,在峰值,截止波長約為415 nm。這代表我們使用InGaN/GaN多重量子井主動層結構成功製作了U V-A光電晶體光偵測器,可在低偏壓下得到相當高的響應率,這種設計是相當可行的。


We report on III-nitrid (III-N) phototransistor action by illuminating ultraviolet photons onto InGaN/AlGaN n-p-i-n heterojunction bipolar in an open-base configuration. And we also report on III-nitrid (III-N) photodector action by illuminating ultraviolet photons onto InGaN/AlGaN p-i-n heterojunction bipolar.
Our InGaN/AlGaN npin phototransistor used Silicon diffusion make p-GaN turns into n-GaN.Our phototransistor can get more gain and more external quantun efficiency.
P-i-n photodetector external quantun efficiency of 45% and responsivity of 0.14 A/W was measured for the device operationg at reverse bias 3.15V. Peakwavelength is 383 nm. Pin is 15.74 μW/cm2.
N-p-i-n phototransistor responsivity of > 1.8A/W was measured for the device operating at collector-to-emitter voltage (VCE) of < 1.56 V in the phototransistor mode.We can get more gain when reverse bias collector leads to a photocurrent as VCE increases. At λ =382 nm, the InGaN/AlGaN p-i-n phototransistor shows a responsivity of > 5 A/W at VCE = 4.71 V.
The the InGaN/AlGaN p-i-n phototransistor demostrates the feasibility of using III-N bipolar transistor stuctures and silicon diffusion for low bias and high-sensivity UV photodection applications.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 第一章 導論 1 1.1緒論 1 1.2UV-A光電晶體偵測器文獻回顧與研究動機 3 第二章 光偵測器理論基礎介紹 14 2.1光偵測器工作原理 14 2.2光偵測器檢測參數 17 2.2.1量子效率(Quantum Efficiency,QE) 17 2.2.2響應率(Responsivity,R) 20 2.2.3響應速度(Response Speed) 20 2.2.4拒斥比(Rejection Ratio) 21 2.2.5雜訊等效功率(Noise Equivalent Power,NEP) 21 2.3光偵測器架構分類[10,12-14] 22 2.3.1 p-n接面光二極體 22 2.3.2 p-i-n接面光二極體 25 2.2.3雪崩光二極體(APD) 28 2.2.4蕭基位障光二極體 31 2.2.5異質接面雪崩型光二極體 33 2.2.6光電晶體 35 第三章 元件設計與儀器介紹 37 3.1光偵測器元件設計 37 3.2 元件製程 41 3.2.1 活化製程(Activation) 42 3.2.2 絕緣製程(Isolation) 42 3.2.3 矽擴散製程 45 3.2.4 高台圖型製程(Mesa) 47 3.2.5 N型、集極電極沉積 48 3.2.6 二氧化矽包覆層沉積 51 3.2.7 透明導電層ITO(Indium Tin Oxide)沉積 51 3.2.8 P型電極沉積 52 3.2.9 射極電極沉積 52 3.3 製程儀器介紹 53 3.3.1 電漿增強式化學氣相沉積(Plasma-enhanced chemical vapor deposition,PECVD) 53 3.3.2 感應耦合電漿反應式離子蝕刻機(Inductively-coupled plasma reactive ion etching,ICP-RIE) 54 3.3.3 電子束蒸鍍機(Electrion-beam evaportor) 56 3.3.4 射頻濺鍍機(RF Sputter) 57 3.4 量測儀器介紹 59 3.4.1 I-V與L-I量測系統 59 3.4.2太陽光模擬光源(Solar simulator)I-V量測 61 3.4.3光激發螢光(Photoluminescence,PL)量測系統 62 3.4.4光電轉換效率量測系統(Incident photon-to-electron conversion efficiency, IPCE) 63 第四章 結果與討論 64 4.1氮化鎵p-i-n光偵測器量測結果與討論 65 4.1.1氮化鎵p-i-n光偵測器操作為LED時的電性(I-V)與光學特性(L-I) 65 4.1.2氮化鎵p-i-n光偵測器暗電流特性探討 67 4.1.3氮化鎵p-i-n光偵測器之外部量子效應(EQE)量測探討 68 4.1.4氮化鎵p-i-n光偵測器在不同偏壓下的響應率 71 4.2光電晶體光偵測器量測結果與討論 73 4.2.1(a) A型光電晶體光偵測器暗電流特性探討 73 4.2.1(b) B型光電晶體光偵測器暗電流特性探討 77 4.2.2(a) A型光電晶體光偵測器之外部量子效應量測 79 4.2.2(b) B型光電晶體光偵測器之外部量子效應量測 83 4.2.3光電晶體光偵測器在不同偏壓下的響應率 86 4.3藍光氮化鎵光電晶體光偵測器量測結果與討論 90 4.3.1藍光氮化鎵光電晶體元件暗電流特性探討 91 4.3.2藍光氮化鎵光電晶體(Sample E)PIN外部量子效應量測與探討 93 4.3.3藍光光電晶體元件(Sample E)在不同偏壓下的響應率 94 第五章 結論與未來展望 96 結論: 96 未來展望: 99 參考文獻 100

[1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny–GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916–921, Oct. 2008.

[2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN–GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617–622, Jun. 2009.

[3] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, “Low-noise back-illuminated AlXGa1-X N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 538–545, Apr. 2001.

[4] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes,’’ IEEE J. Quantum Electron., vol. 36, no. 12, pp. 1389-1391,Dec. 2000.

[5] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,’’ Appl. Phys. Lett., vol. 94, 221109, Jun. 2009.

[6] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C.Campbell, Appl. Phys. Lett. vol. 77, 2810, Feb. 2000.

[7] Shen, S.-C. , Kao, T.-T., Kim, H.-J., Lee, Y.-C., Kim, J., Ji, M.-H., Ryou, J.-H., Detchprohm, T., Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol. 8, 032101, Feb. 2015.

[8] Feng, W., Wu, J.-B., Li, X., Zheng, W., Zhou, X., Xiao, K., Cao, W., Yang, B., Idrobo, J.-C., Basile, L., Tian, W., Tan, P., Hu, P. “ Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response,” J. Mater. Chem. C., vol. 3, pp. 7022-7028, May. 2015.

[9] M. C. Chen, J. K. Sheu, M. L. Lee, C. J. Kao, C. J. Tun, G. C. Chid, “Planar Ultraviolet Photodetectors Formed by Si Implantation
into p-GaN,” Journal of The Electrochemical Society, vol. 153 , issue 9, pp. G799-G801, Jun. 2006.
[10] S. O. Kasap, OPTOELECTRONICS AND PHOTOICS principles and Practices, Peason Education Interational, 2001.
[11]Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
[12]劉博文,光電元件導論,全威圖書有限公司,台北,2005。
[13]林螢光,光電子學 原理、元件與應用,全華圖書有限公司,台北,2008。
[14]孫慶成,光電概論,全華圖書有限公司,台北,2007。
[15]施敏,Semiconductor Devices Physics and Technology,2nd ed. 半導體元件物理與製作技術,國立交通大學出版社,新竹,2002
[16]葉秉慧、余孟純、林家煥、黃景勤,”一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國與美國發明專利申請中。

[17] H. Jiang, T. Egawa, H. Ishikawa, “AlGaN Solar-Blind Schottky Photodiodes Fabricated on 4H-SiC,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 18, no. 12, June 15, 2006.

[18]J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, ”Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE ELECTRON DEVICE LETTERS, vol. 31,no. 10, Oct. 2010.
[19] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
[20] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
[21]黃致維,「氮化鎵光偵測器之初步研究」,國立台灣科技大學電子工程所碩士學位論文,台北,2014
[22]黃義廷,「表面結構化對蛋化銦鎵p-i-n光感測器特性之影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2015
[23]X. Luo, L.Du, W. Lv, L. Sun, Y. Li, Y. Peng, F. Zhao, J. Zhang, Y. Tang, Y. Wang, “Charge-transport interfacial modification enhanced ultraviolet (UV)/near-UV phototransistor with high sensitivity and fast response speed,” Synthetic Metals., vol. 210, part B, pp. 230-235, Dec. 2015.

[24]H. Huang, P. Wang, Y. Gao, X. Wang, T. Lin, J. Wang, L. Liao, J. Sun, X. Meng, Z. Huang, X. Chen, J. Chu, “Highly sensitive phototransistor based on GaSe nanosheets,” Appl. Phys. Lett., vol. 104, 143112, Oct. 2015.
[25]A. Bablich, C. Merfort, J. Eliasz, H. Schäfer-Eberwein, P. Haring-Bolivar, M. Boehma, “Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain,” Thin Solid Films., vol. 558, pp. 430-437, March , 2014.

[26]S. Okur, F. Yakuphanoglu, E. Stathatos, “High-mobility pentacene phototransistor with nanostructured SiO2 gate dielectric synthesized by sol–gel method,” Microelectronic Engineering, vol. 87, pp. 635-640, July 2009.
[27]X. Feng, Z. Li, W. Mi, Y. Luo, J. Ma, “Mg-doped β-Ga2O3 films with tunable optical band gap prepared on MgO (110) substrates by matel-organic chemical vapor deposition,” Materials Sciencein Semiconductor Processing, vol. 34, pp. 52-57, Feb. 2015.

[28] D. Yang, L. Zhang, H. Wang, Y. Wang, Z. Li, T. Song, C. Fu, S. Yang, B. Zou, “Pentacene-Based Photodetector in Visible Region With Vertical Field-Effect Transistor Configuration,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 27, no. 3, pp. 233-236, Feb. 2015.

[29] T. H. Chang, S. J. Chang, C. J. Chiu, C. Y. Wei, Y. M. Juan, W. Y. Weng, “Bandgap-Engineered in Indium–Gallium–Oxide Ultraviolet Phototransistors,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 27, no. 8, April, 2015.
[30]T. T. Kao, J. Kim, Y. C. Lee, M. H. Ji, A. Haq, T. Detchprohm, R. D. Dupuis, and S.-C. Shen, “Performance Evaluation of GaN/InGaN Heterojunction Phototransistors,” CLEO: Science and Innovations, pp. SW4N.3, May, 2015.

[31] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N Al0.30Ga0.70N p–i–n photodiodes,” Appl. Phys. Lett., vol. 94, 221109, July, 2009.

[32]S. Chang, M. Lee, J. Sheu, W. Lai, Y. Su, C. Chang, C. Kao, G. Chi, and J. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” vol. 24, no. 4, pp. 212-214, April, 2003.

QR CODE