簡易檢索 / 詳目顯示

研究生: 王暄瑜
Syuan-Yu Wang
論文名稱: 三自由度並聯式機器人之操控性分析及比較
Analysis and Comparison for the dexterity of different type of 3-DOF Parallel Manipulators
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 石伊蓓
Yi-Pei Shih
王勵群
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 等向性並聯式機器人操控性Delta機器人3-RRR3-RPR
外文關鍵詞: isotropic, parallel manipulator, dexterity, Delta manipulator, 3-RRR, 3-RPR
相關次數: 點閱:240下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一等向性機器人通常被認為具有最佳操控性之設計,但當機器人之工作區域偏離一等向點時其操控性會大幅下降甚至會接近奇異點。本文提出方法藉由調整並聯式機器人工作平台上刀具或夾具上參考點位置以改變原機器人之等向點位置,此方法可將一機器人之等向點移至一指定工作區域之中心位置而改善原機器人之操控性,其次將此方法應用於3-RRR及3-RPR兩類平面型並聯式機器人並獲得非常好之改良,至於三自由度Delta型機器人方面,此研究發現其工作空間內之任何點皆有極佳之操控性,因此理論上不需藉由改變參考點位置之方法來提升其操控性。最後針對此三種並聯式機器人之操控性及運動效率進行比較。


    An isotropic manipulator is generally considered to have optimal dexterity, but the same manipulator can still have very poor dexterity and even reach a singular configuration if it operates in a region that is far from isotropic positions. This thesis presents methods that adjust the tool center point on the platform to change the locations of isotropic positions. The methods can move an isotropic position to the center point of a designated working region and improve the dexterity of a manipulator when it operates in that region. The proposed methods significantly improve the dexterity of 3-RRR and 3-RPR planar manipulators. For a 3-DOF Delta manipulator, this study shows that all the points inside the workspace have very good dexterity, so there is no need to improve the dexterity using the proposed methods. The speed and dexterity of the three parallel manipulators are compared to determine which design has better kinematic properties.

    中文摘要 I AbstractII 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 1.3 本文架構 9 第二章 平面三自由度3-RRR並聯式機器人 10 2.1 正位移分析 10 2.2 反位移分析 13 2.3 賈氏矩陣之推導 15 2.4 等向性條件 17 2.5 等向性區間及連桿參數 18 2.6 數值範例 21 2.7 小結 29 第三章 平面三自由度3-RPR並聯式機器人 31 3.1 正位移分析 31 3.2 反位移分析 34 3.3 賈氏矩陣之推導 35 3.4 等向性區間及連桿參數 37 3.5 數值範例 39 3.6 小結 46 第四章 空間三自由度Delta型並聯式機器人 48 4.1 正位移分析 48 4.2 反位移分析 52 4.3 賈氏矩陣 54 4.4 操控性指數及奇異值 55 4.5 等向性構形及操控性曲線 56 4.6 機器人運動效率之評估 59 第五章 結論與未來研究方向 61 參考文獻 63 附錄A 3-RRR並聯式機器人之賈氏矩陣 67 附錄B 3-RRR並聯式機器人改變參考點位置後之賈氏矩陣 69 附錄C 3-RPR並聯式機器人之賈氏矩陣 71 附錄D 3-RPR並聯式機器人改變參考點位置後之賈氏矩陣 73

    [1]余汯育,「機器人操控性曲面及應用」,碩士論文,國立臺灣科技大學機械工程研究所,臺北(2010)。
    [2]Clavel et al., “Device for the Movement and Positioning of an Element in Space”, United States Patent No. US4976582, 1990.
    [3]TurboSquid, Inc. [Onine]. Available: http://www.turbosquid.com/ 3d-models/3d-model-delta-robots-machines.
    [4]陳馨怡,「三RRSR鏈六自由度並聯式機器人之設計及製作」,碩士論文,國立臺灣科技大學機械工程研究所,臺北(2012)。
    [5]Liu Shanzeng et al, “Dynamic Simulation of 3-RSR flexible parallel robot” , IEEE, pp. 5091-5094 (2010)
    [6]Zhumadil Zh. B., et al, “Singularity analysis of the new parallel manipulator with 6 degree-of-freedom” , Proceedings of the World Congress on Engineering Vol II, pp. 1472-1477 (2010)
    [7]Shu Jun L., and Qiao Ling M., “Stiffness Analysis of 6-SPS Parallel Manipulator” , Advanced Materials Research, Vol. 468-471, pp. 1220-1223 (2012)
    [8]H. Azulay et al, “Comparative analysis of a new 3×PPRS parallel kinematic mechanism” , Robotics and Computer-Integrated Manuf- -acturing, Vol. 30, Issue 4, pp. 369-378 (2013)
    [9]Lu Y., et al, “Kinematics and statics analysis of a novel 5-DoF parallel manipulator with two composite rotational/linear active legs” , Robotics and Computer-Integrated Manufacturing, Vol. 30, Issue 1, pp. 25-33 (2013)
    [10]Yahyapour, I., et al, “On the Inverse Dynamic Problem of a 3-PRRR Parallel Manipulator, the Tripteron” , IEEE, pp. 390-395 (2013)
    [11]Asgari, M., Ardestani, M.A., and Asgari, M., “Dynamics and Control of a Novel 3-DoF Spatial Parallel Robot” , IEEE, pp. 183-188 (2013)
    [12]Gosselin, C.M. and Sefrioui, J., “Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators” , IEEE, Vol. 2, pp. 1124-1129 (1991)
    [13]Merlet, J.-P., “Direct kinematics of planar parallel manipulators” , IEEE, Vol. 4, pp. 3744-3749 (1996)
    [14]Ping Ji and Hongtao Wu, “An Efficient Approach to the Forward Kinematics of a Planar Parallel Manipulator With Similar Platforms” , IEEE, Vol. 3, pp. 647-649 (2002)
    [15]Georges F., et al, “Determination of 3-RPR Planar Parallel Robot Assembly Modes by Jacobian Matrix Factorization” , WSEAS TRANSACTIONS, vol. 7, Issue 2, pp. 41-48 (2008)
    [16]Stefan S., “Recursive modelling in dynamics of Delta parallel robot”, Robotica, Vol. 27, Issue 2, pp. 199-207 (2009)
    [17]Kong. X., “Forward Displacement and Singularity Analysis a Class of Analytic 3-RPR Planar Parallel Manipulator” , Proceedings of Advanced Manufacturing Technology, pp. 103-104 (1995)
    [18]Damien C., and Philippe W., “The Kinematic Analysis of a Symmetrical Three-Degree-of Freedom Planar Parallel Manipulator” , Symposium on Robot Design, Dynamics and Control, Vol. 7, pp. 1-7 (2007)
    [19]Lopez, M., et al., “Delta robot: Inverse, direct, and intermediate Jacobians” , Journal of Mechanical Engineering Science, Vol. 220, Issue 1, pp. 103-109 (2006)
    [20]Amir R., and Alireza A., “Position,Jacobian and workspace analysis of a 3-PSP spatial parallel manipulator” , Robotics and Computer-Integrated Manufacturing, Vol. 29, pp. 158-173 (2013)
    [21]Stan, S., et al., “Performance analysis of 3 DOF Delta parallel robot” , IEEE, pp. 215-220 (2011)
    [22]Damien C., et al., “Comparison of Planar Parallel Manipulator Architectures based on a Multi-objective Design Optimization Approach” , ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Vol. 10, Issue 2, pp. 1-10 (2010)
    [23]Gui-Fang Z., “Classification of direct kinematics to planar generalized Stewart platforms” , Computational Geometry: Theory and Applications, Vol. 45, Issue 8, pp. 458-473 (2012)
    [24]Ziming Chen, Wen-ao Cao and Zhen Huang, “Kinematics Analysis of a New 3-DOF Rotational Parallel Mechanism” , ASME, Vol. 4, pp. 573-578 (2012)
    [25]Amir R., et al., “Position,Jacobian and workspace analysis of a 3-PSP spatial parallel manipulator” , Robotics and Computer-Integrated Manufacturing, Vol. 29, pp. 158-173 (2013)
    [26]Nalluri, M. R., and K. Mallikarjuna Rao, “Dimensional synthesis of a spatial 3-RPS parallel manipulator for a prescribed range of motion of spherical joints” , Mechanism and Machine Theory, Vol. 44, Issue 2, pp. 477-486 (2009)
    [27]Gosselin, C., and Angeles, J., “The optimum kinematic design of a planar three-degree-of freedom parallel manipulator” , Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 35-41 (1988)
    [28]Gosselin, C., and Angeles, J., “The optimum kinematic design of a Spherical three-degree-of freedom parallel manipulator” , Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 202-207 (1989)
    [29]Angeles, J., and Lopaze-Cajun, C. S, “Kinematic isotropy and the conditioning index of serial robotic manipulators” , Int. J. Robot. Res, Vol.11, Issue 6, pp. 560-5711 (1992)
    [30]Kenneth H. P., and Ron P. P., “A family of Stewart platforms with optimal dexterity” , Journal of Robotic Systems, Vol. 10, Issue 4, pp. 463-479 (1993)
    [31]Stounghton, R., S., and Aria, T., “A modified Stewart platform manipulator with improved dexterity” , IEEE Trans. Robot. and Autom., Vol. 9, NO. 2, pp. 166-173 (1993)
    [32]Angeles, J., “The design of isotropic manipulator architectures in the presence of redundancies” , Int. J. Robot. Res., Vol. 11, Issue 3, pp. 196-201 (1992)
    [33]Zanganeh, K. E., and Angeles, J., “Kinematic isotropy and the optimum design of parallel manipulators” , International Journal of Robotics Research, Vol. 16, Issue 2, pp. 185-197 (1997)
    [34]Fattah, A., and A.M. Hasan Ghasemi, “Isotropic Design of Spatial Parallel Manipulators” , The International Journal of Robotics Research, Vol. 21, pp. 811-824 (2002)
    [35]Klein, C. A., and Miklos, T. A., “Spatial Robotic Isotropic” , The International Journal of Robotics Research, Vol. 10, No. 4, pp. 426-437 (1991)
    [36]Tsai, K. Y., and Huang, K. D., “The Design of Isotropic 6-DOF Parallel Manipulators using Isotropy Generators” , Mechanism and Machine Theory , Vol. 38, No. 11, pp. 1199-1214 (2003)
    [37]Yanbin, Z., and Kwun-lon Ting, “Design and Analysis of a Spatial 3-DOF Parallel Manipulator with 2T1R-Type”, International Journal of Advanced Robotic Systems , Vol. 10, pp. 1-8 (2013)
    [38]Gosselin, C. M., and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators” , ASME J. Mech. Des., Vol. 113, No. 3, pp. 220-226 (1991)
    [39]Liu, X. J., Wan, J., and Pritschow, G., “Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms” , Mech. Mach. Theory, Vol. 41, No. 2, pp. 119-144 (2006)
    [40]Merlet J. P., “Jacobian, manipulability, condiction number, and accuracy of parallel robots” , ASME J. Mech. Des., Vol.128, pp. 199-208 (2006)
    [41]Miller, K., “Optimal design and modeling of special parallel manipulators” , Int. J. Robot. Res., Vol.23, pp. 127-140 (2004)
    [42]Kircanski, M., “Kinematic isotropy and optimal kinematic design of planar manipulators and a 3-DOF spatial manipulator”, Int. Journal of Robotics Research , Vol.15, Issue 1, pp. 61-77 (1996)
    [43]Tsai K. Y., Lin P. Y., and Lee T. K., “4R spatial and 5R parallel manipulators that can reach maximum number of isotropic positions” , Mechanism-and-Machine-Theory, Vol.43, pp. 68-79 (2008)
    [44]Tsai K. Y., Lin P. J., and Yu H. Y., “Developing contour surface of manipulators with specified dexterities” , Robotica, Vol.29, Issue 07, pp. 1025-1035 (2011)
    [45]Tsai K. Y., and Lin P. J., “Manipulators with changeable isotropic positions,” 3rd IFToMM International Symposium on Robotics and Mechatronics, PP. 1-10 (2013)
    [46]Denny, O., et al., “Direct Kinematics and Analytical Solution to 3RRR Parallel Planar Mechanisms” , IEEE, pp. 1-6 (2006)
    [47]M.A. Laribi, L. Romdhane, and S. Zeghloul, “Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace” , Mechanism and Machine Theory, pp.859-870 (2007)

    QR CODE