簡易檢索 / 詳目顯示

研究生: 劉德晟
De-Sheng Liu
論文名稱: 基於上下文信息暨有限嘗試次數之毫米波小區發現改進機制
An Improved Cell Discovery Scheme for mmWave Based on Position Context Information with Limited Attempts
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 馮輝文
Huei-Wen Ferng
范欽雄
Chin-Shyurng Fahn
林嘉慶
Jia-Chin Lin
葉生正
Sheng-Cheng Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 40
中文關鍵詞: 毫米波波束成型初始訪問初始波束搜尋
外文關鍵詞: mmWave, Beamforming, Initial Access, Initial Beam Search
相關次數: 點閱:312下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了解決毫米波 (Millimeter Wave) 高衰減的特性,毫米波訊號利用波束成型 (Beamforming) 的技術來傳輸,將訊號朝一個特定方向集中發射,而非全向 (Omnidirectional) 發射。然而,高度方向性的波束對於使用者的地理位置是很敏感的。因此,在毫米波通訊的初始訪問 (Initial Access) 中,初始波束搜尋 (Initial Beam Search) 是必要的。而基於位置上下文信息 (Position Context Information) 的波束搜尋方法在使用者所提供的位置信息與其真實位置的誤差較大情況時,可能會遭遇預期外的延遲。於是,本論文將針對這種情況下做設計,透過限制上下文信息方法的嘗試次數,並混合盲搜尋方法,以避免方法在錯誤方向進行長時間的搜尋,降低其對毫米波通信系統所帶來的影響,來改善初始訪問階段的延遲。經由模擬的結果顯示,我們所提的方法比起基於位置上下文信息的 EDP (Enhanced Discovery Procedure) 方法在延遲上有平均20%左右的改善; 而在環境較差的情況下,更可達43%左右的改善。


In order to address the issues caused by the high-attenuation characteristics of the millimeter-wave, the millimeter-wave signals are transmitted using the beamforming technology. Therefore, signals are transmitted directionally rather than omnidirectionally. However, highly directional beams are very sensitive to the geographic location of a user. This makes the initial beam search is necessary for the initial access of the millimeter-wave communication. However, the beam search method based on the position context information may encounter an unexpected delay when the acquired position information of the user has a large error from the actual position. Specially focusing on this situation by limiting the number of attempts of the context information method along with the blind search method, time-consuming searches in the wrong direction can be avoided to mitigate the impact on the millimeter-wave communication system and to improve the initial access delay. Via simulations, we show that the proposed scheme has an average performance improvement of 20% or so as compared to the enhanced discovery procedure (EDP) scheme based on the position context information. It can even reach 43% or so of improvement when studying in a bad mode.

論文指導教授推薦書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 考試委員審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 第五代行動通訊系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 毫米波通信 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章、相關研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 毫米波初始訪問 (mmWave Initial Access) . . . . . . . . . . . . . . . . . . 6 2.2 波束寬對小區發現方法的影響 . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 上下文信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 控制/用戶平面不匹配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 相關的小區發現方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5.1 窮舉搜尋 (Exhaustive Search, ES) 演算法 . . . . . . . . . . . . . . . . . 8 2.5.2 單邊搜尋 (Enhanced One-Sided Search, EOSS) 演算法 . . . . . . . . . . . . 11 2.5.3 位置上下文信息方法 (Position Context Information Methods) . . . . . . . . 14 2.5.4 增強發現程序 (Enhanced Discovery Procedure, EDP) 演算法 . . . . . . . . . 15 第三章、所提出的方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 問題描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 初始波束選擇策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 限制上下文信息方法的嘗試次數 . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 混合盲搜尋方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 第四章、模擬及數據 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 毫米波的傳播及天線增益 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 模擬環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 偏移值的影響 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 不同方法之模擬結果比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第五章、結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

[1] I. Filippini, V. Sciancalepore, F. Devoti, and A. Capone, “Fast cell discovery in mm-wave 5G networks with context information,” IEEE Transactions on Mobile Computing, vol. 17, no. 7, pp. 1538–1552, Jul. 2018.

[2] We Are Social Inc., “Digital in 2020, Global overview report,” Apr. 2020.

[3] Huawei Technologies Co., “NB-IoT - Enabling new business opportunities,” 2015.

[4] ITU-R, “Minimum requirements related to technical performance for IMT2020 radio interface(s),” Nov. 2017.

[5] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, “What will 5G be?,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[6] A. Ghosh, T. A. Thomas, M. C. Cudak, R. Ratasuk, P. Moorut, F. W. Vook, T. S. Rappaport, G. R. MacCartney, S. Sun, and S. Nie, “Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1152–1163, Jun. 2014.

[7] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave cellular wireless networks: Potentials and challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, Feb. 2014.

[8] M. Jasim, Initial beam access schemes for millimeter wave cellular networks. PhD thesis, University of South Florida, Apr. 2018.

[9] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100–1114, Nov. 2014.

[10] A. Capone, A. F. Dos Santos, I. Filippini, and B. Gloss, “Looking beyond green cellular networks,” in Proc. IEEE Annual Conference on Wireless OnDemand Network Systems and Services (WONS), pp. 12–130, Jan. 2012.

[11] A. Mohamed, O. Onireti, M. A. Imran, A. Imran, and R. Tafazolli, “Controldata separation architecture for cellular radio access networks: A survey and outlook,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 446–465, Jun. 2015.

[12] 5G Americas, “Advanced antenna systems for 5G,” 2019.

[13] Y.-N. R. Li, B. Gao, X. Zhang, and K. Huang, “Beam management in millimeter-Wave communications for 5G and beyond,” IEEE Access, vol. 8, pp. 13282–13293, Jan. 2020.

[14] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, “5G new radio: Waveform, frame structure, multiple access, and initial access,” IEEE Communications Magazine, vol. 55, no. 6, pp. 64–71, Jan. 2017.

[15] C. N. Barati, S. A. Hosseini, M. Mezzavilla, T. Korakis, S. S. Panwar, S. Rangan, and M. Zorzi, “Initial access in millimeter wave cellular systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 7926–7940, Dec. 2016.

[16] 4G Americas, “MIMO and smart antenna technologies for 3G and 4G wireless system,” 2010.

[17] V. Raghavan, J. Cezanne, S. Subramanian, A. Sampath, and O. Koymen, “Beamforming tradeoffs for initial UE discovery in millimeter-wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 543–559, Apr. 2016.

[18] M. Giordani, M. Mezzavilla, and M. Zorzi, “Initial access in 5G mmWave cellular networks,” IEEE Communications Magazine, vol. 54, no. 11, pp. 40–47, Nov. 2016.

[19] A. S. Marcano and H. L. Christiansen, “Macro cell assisted cell discovery method for 5G mobile networks,” in Proc. IEEE Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016.

[20] R. J. Weiler, W. Keusgen, I. Filippini, and A. Capone, “Split control plane functionality in millimeter-wave overlay access,” in Proc. IEEE International Conference on 5G for Ubiquitous Connectivity, pp. 134–139, Nov. 2014.

[21] Q. C. Li, H. Niu, G. Wu, and R. Q. Hu, “Anchor-booster based heterogeneous networks with mmWave capable booster cells,” in Proc. IEEE Globecom Workshops (GC Wkshps), pp. 93–98, Dec. 2013.

[22] C. Jeong, J. Park, and H. Yu, “Random access in millimeter-wave beamforming cellular networks: Issues and approaches,” IEEE Communications Magazine, vol. 53, no. 1, pp. 180–185, Jan. 2015.

[23] L. Wei, Q. C. Li, and G. Wu, “Initial access techniques for 5G NR: Omni/beam SYNC and RACH designs,” in Proc. IEEE International Conference on Computing, Networking and Communications (ICNC), pp. 249–253, Mar. 2018.

[24] J. Lin and W. An, “A new initial beam search scheme in 5G new radio,” in Proc. IEEE International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 182–186, Oct. 2019.

[25] S. Payami, M. Shariat, M. Ghoraishi, and M. Dianati, “Effective RF codebook design and channel estimation for millimeter wave communication systems,” in Proc. IEEE International Conference on Communication Workshop (ICCW), pp. 1226–1231, Jun. 2015.

[26] R. E. Rezagah, H. Shimodaira, G. K. Tran, K. Sakaguchi, and S. Nanba, “Cell discovery in 5G HetNets using location-based cell selection,” in Proc. IEEE Conference on Standards for Communications and Networking (CSCN), pp. 137–142, Oct. 2015.

[27] A. Capone, I. Filippini, and V. Sciancalepore, “Context information for fast cell discovery in mm-wave 5G networks,” in Proc. European Wireless Conference, pp. 1–6, May 2015.

[28] A. Maltsev, A. Pudeyev, I. Bolotin, G. Morozov, I. Karls, M. Faerber, I. Siaud, A. Ulmer-Moll, J. Conrat, R. Weiler, et al., “Millimetre-wave evolution for backhaul and access,” MiWEBA, Germany, Tech. Rep. FP7-ICT, vol. 608637, 2014.

[29] C. N. Barati, S. A. Hosseini, S. Rangan, P. Liu, T. Korakis, S. S. Panwar, and T. S. Rappaport, “Directional cell discovery in millimeter wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 6664 – 6678, Dec. 2015.

QR CODE