簡易檢索 / 詳目顯示

研究生: 游博丞
Bo-Cheng You
論文名稱: 毫米波連接器與 Ka 頻段衛星通訊陣列天線設計及主動式天線OTA近場量測技術
Design of Millimeter Wave Connectors and Array Antennas for Ka Band Satellite Communications together with OTA Near Field Measurement Techniques for Active Antennas
指導教授: 楊成發
Chang-Fa Yang
口試委員: 陳筱青
Hsiao-Chin Chen
陳世傑
Shih-Chieh Chen
林健維
Ike Lin
陳文士
Wen-Shih Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 203
中文關鍵詞: 毫米波連接器PCIe連接器Ka頻段衛星通訊陣列天線主動式天線近場天線量測
外文關鍵詞: Millimeter Wave Connector, PCIe Connector, Ka-band Satellite Communications, Array Antennas, Active Antennas, Near Field Antenna Measurements
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對高頻與高速連接需求以及無線通訊趨勢,提出四個研究主題,包括可應用於毫米波頻段網路與通訊裝置之連接器與陣列天線設計以及主動式天線OTA近場量測技術。
    第一部分提出符合PCIe 5.0規格的內部匯流排高速連接器,採用了不歸零 (Non-Return-to-Zero, NRZ)調變架構,以差分訊號輸出,而頻率涵蓋需達到24GHz以上,其中搭配特殊內外接地板架構與屏蔽外殼,可有效解決串音干擾。此外亦探討下世代PCIe 6.0之規格,其是以四階脈衝振幅調變(Pulse Amplitude Modulation 4, PAM4) 方式,期望傳輸速率可達到64.0 GT/s,即PCIe 5.0傳輸速率的兩倍。
    第二部分提出一款用於毫米波頻段之高頻同軸連接器,操作頻率可由DC至60 GHz,搭配高頻低損耗同軸線來形成跳線,可有效改善毫米波頻段連接損失,期能應用於5G毫米波基地台與行動裝置、衛星通訊、雷達等。
    第三部分為Ka頻段衛星通訊圓極化陣列天線設計,研製可符合低軌道衛星通訊地面站應用之波束掃描相控陣列天線,其中為避免天線極化偏移問題,乃採用雙饋入達到圓極化效果,並應用第二部分之毫米波跳線來取代傳統印刷電路板走線,以降低子陣列天線間連接損耗,進而提高整體天線增益與設計自由度。
    第四部分為研發OTA模式近場天線量測技術,傳統近場天線量測系統已相當準確,但由於5G基地台天線與放大器、調變器等整合成主動式天線,傳統射頻埠口將消失。為了解決此問題,本研究以相位重建方式來獲得天線近場,建立了主動式天線之近場量測技術。

    關鍵字:毫米波連接器、PCIe連接器、Ka頻段衛星通訊、陣列天線、主動式天線、近場天線量測


    This paper proposes four research topics for high-frequency and high-speed connection requirements and wireless communication trends. Those topics include connector and array antenna designs for millimeter wave networks and communication devices, and OTA near-field measurement technology for active antennas.
    The first part proposes an internal bus high-speed connector that complies with PCIe 5.0 specifications. It adopts a Non-Return-to-Zero (NRZ) modulation for differential signals. The frequency coverage needs to reach 24GHz above. The internal and external ground structures or shielding shells of the connector can effectively solve the crosstalk interferences. Also, the specifications of the next-generation PCIe 6.0 are discussed. Pulse Amplitude Modulation 4 (PAM4) method is used for a transmission rate of 64.0 GT/s, twice that of the PCIe 5.0.
    The second part proposes a high-frequency coaxial connector for millimeter wave bands. The operating frequency can range from DC to 60 GHz. Integrated with a high-frequency low-loss coaxial cable to form a jump wire, the connection loss in the millimeter wave bands can be effectively improved. It is expected to be applied to 5G millimeter wave base stations and mobile devices, satellite communications, radars, etc.
    The third part is the design of the circularly polarized beamforming array antenna for the low-orbit Ka-band satellite communication ground station. In order to reduce the connection loss between the sub-array antennas, the millimeter wave jump wires in Part 2 are applied to replace PCB lines so that the overall antenna gain and design flexibility can be improved.
    The fourth part is to develop an OTA near-field measurement method for active antennas. Traditional near-field antenna measurement systems are quite accurate. However, due to the integration of the 5G base station antenna, amplifier, modulator, etc. into an active antenna system, traditional RF ports disappear. To solve this problem, the antenna near field is obtained with a phase reconstruction method in this study to establish the near-field measurement technology for the active antennas.

    Keywords: Millimeter Wave Connector, PCIe Connector, Ka-band Satellite Communications, Array Antennas, Active Antennas, Near Field Antenna Measurements

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XIX 第壹章 緒論 1 1.1 研究動機與流程 1 1.2 概述 5 第貳章 連接器概論 6 2.1 前言 6 2.2 連接器種類與發展 6 2.2.1 連接器基本架構 7 2.2.2 連接器製作工藝 8 2.3 特性阻抗 9 2.4 時域反射法 11 2.5 頻寬與脈衝上升時間 14 2.6 傳輸損耗 15 2.7 差模訊號 17 2.8 串音干擾 21 2.9 小結 23 第參章 PCIe 5.0高速連接器 24 3.1前言 24 3.2 PCIe 5.0高速連接器架構與規範 25 3.3 PCIe 5.0高速連接器模擬與量測 28 3.3.1 PCIe 5.0模擬與分析 28 3.3.2 PCIe 5.0改善架構模擬與分析 31 3.4 PCIe 5.0高速連接器串音分析 34 3.4.1 PCIe 5.0全板架構模擬與分析 34 3.4.2 PCIe 5.0屏蔽外殼模擬與分析 37 3.5 PCIe 5.0量測與模擬比較 40 3.5.1 PCIe 5.0初始架構量測與分析 40 3.5.2 PCIe 5.0改善架構量測與分析 46 3.5.3 PCIe 5.0屏蔽串音干擾量測與分析 52 3.6 小結 53 第肆章 毫米波同軸連接器 54 4.1 前言 54 4.2 NRF7連接器架構與規範 55 4.3 NRF7連接器模擬與量測分析 58 4.3.1 NRF7連接器模擬與分析 58 4.3.2 NRF7實測架構模擬與分析 64 4.4 NRF7實測與分析 67 4.5 小結 74 第伍章 Ka頻段衛星圓極化陣列天線設計 75 5.1 前言 75 5.2 Ka頻段圓極化天線單元設計 78 5.2.1 Ka頻段圓極化天線單元架構 79 5.2.2 Ka頻段圓極化下行天線單元模擬與分析 83 5.2.3 Ka頻段圓極化上行天線單元模擬與分析 88 5.3 Ka頻段圓極化陣列天線設計 93 5.3.1 8×8圓極化陣列天線連架構 96 5.3.2 16×16圓極化陣列天線連接架構 98 5.3.3 32×32圓極化陣列天線連接架構 99 5.3.4 NRF7毫米波同軸連接器與板材走線比較 101 5.4 圓極化陣列天線模擬結果 103 5.4.1 8×8圓極化陣列天線模擬結果 103 5.4.2 16×16 圓極化陣列天線模擬結果 113 5.4.3 32×4 圓極化陣列天線模擬結果 120 5.5 圓極化陣列天線量測結果 127 5.5.1 8×8圓極化陣列天線散射參數量測 127 5.5.2 8×8圓極化陣列天線量測與模擬結果對比 131 5.6 小結 142 第陸章 主動式天線OTA近場量測技術 143 6.1 前言 143 6.2 天線量測基本原理 144 6.2.1 近場量測 147 6.2.4 系統性OTA量測 148 6.3 主動式天線OTA近場量測 149 6.4 主動式天線OTA近場量測結果驗證 150 6.4.1 OTA理想測試架構 151 6.4.2 量測系統內部環境干擾 155 6.4.3 OTA測試改善架構 158 6.4.4 基地台模式OTA測試架構 167 6.4.5 實體基地台OTA測試量測 171 6.5小結 175 第柒章 結論 176 參考文獻 178

    [1] Seamless Transition to PCIe® 5.0 Technology in System Implementations.
    https://pcisig.com/sites/default/files/files/PCI-SIG-Seamless_Transition_to_PCIe _5.0_in_System_Implementations_FINAL.pdf (December 9, 2020)
    [2] 3GPP Release 16.
    https://www.3gpp.org/release-16 (July 3, 2020)
    [3] H. Al-Saedi, W. M. Abdel-Wahab, S. Gigoyan, R. Mittra and S. Safavi-Naeini, “Ka-Band Antenna With High Circular Polarization Purity and Wide AR Beamwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1697-1701, Sept. 2018, doi: 10.1109/LAWP.2018.2864172.
    [4] J. Wu, Y. J. Cheng and Y. Fan, “Millimeter-Wave Wideband High-Efficiency Circularly Polarized Planar Array Antenna,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 535-542, Feb. 2016, doi: 10.1109/TAP.2015.2506726.
    [5] Nasimuddin, Xianming Qing and ZhiNing Chen, “A wideband circularly polarized microstrip array antenna at Ka-band,” 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016, pp. 1-4, doi: 10.1109/EuCAP.2016.7481214.
    [6] H. Al-Saedi et al., “An Integrated Circularly Polarized Transmitter Active Phased-Array Antenna for Emerging Ka-Band Satellite Mobile Terminals,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5344-5352, Aug. 2019, doi: 10.1109/TAP.2019.2913745.
    [7] A. H. Aljuhani, T. Kanar, S. Zihir and G. M. Rebeiz, “A Scalable Dual-Polarized 256-Element Ku-Band Phased-Array SATCOM Receiver with ±70° Beam Scanning,” 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1203-1206, doi: 10.1109/MWSYM.2018.8439257.
    [8] B. Rautio and J. Coonrod, “An Efficient EM Simulation Model for ENIG Plated Metal Finishes Including Conductor Side-Wall Plating Verified with Physical Measurement from 1 to 50 GHz,” IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), 2018.
    [9] A. Ippich, “PCB Surface Finish Impact to Losses at High Frequencies,” IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), 2019.
    [10] Y. Tao and F. Scharf, “Revisiting the Effect of Nickel Characteristics on High-Speed Interconnect Performance,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2447-2453, Aug. 2016.
    [11] S. Mener, R. Gillard and L. Roy, “A Dual-Band Dual-Circular-Polarization Antenna for Ka-Band Satellite Communications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 274-277, 2017.
    [12] C. Yu et al., “Full-Angle Digital Predistortion of 5G Millimeter-Wave Massive MIMO Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2847-2860, July 2019.
    [13] Y. Yu, Z. H. Jiang, H. Zhang, Z. Zhang and W. Hong, “A Low-Profile Beamforming Patch Array With a Cosecant Fourth Power Pattern for Millimeter-Wave Synthetic Aperture Radar Applications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 9, pp. 6486-6496, Sept. 2020.
    [14] Q. Yang et al., “Cavity-Backed Slot-Coupled Patch Antenna Array With Dual Slant Polarization for Millimeter-Wave Base Station Applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1404-1413, March 2021.
    [15] 黃宇成,「高頻連接器及毫米波雷達天線與饋入架構設計」,國立臺灣科技大學,中華民國109年7月。
    [16] 許容賓,「下世代 USB 高速連接器與毫米波連接器設計」,國立臺灣科技大學,中華民國 110 年 7 月。
    [17] D.M. Pozar, Microwave Engineering, 4th edition, John Wiley & Sons, Nov. 2011.
    [18] H. W. OTT, Electromagnetic Compatibility Engineering, John Wiley & Sons, 2009.
    [19] S. H. Hall, H. L. Heck, Advanced Signal Integrity for High-Speed Digital Design, John Wiley & Sons, 2009.
    [20] H. Johnson, M. Graham, High-Speed Signal Propagation Advanced Black Magic, Prentice Hall PTR, 2003.
    [21] M. Magerl, T. Mandic and A. Baric, “Broadband characterization of SMA connectors by measurements,” 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2014.
    [22] G. Shiue, C. Yeh, H. Y. Liao and P. Huang, “Significant Reduction of Common-Mode Noise in Weakly Coupled Differential Serpentine Delay Microstrip Lines Using Different- Layer-Routing-Turned Traces,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 10, pp. 1671-1683, Oct. 2014.
    [23] Inte/解決方案/技術/PCIe 5.0
    https://www.intel.com.tw/content/www/tw/zh/gaming/resources/what-is-pcie-4-and-why-does-it-matter.html(December 9, 2020)
    [24] 50G PAM4技術白皮書
    [25] PCIe-5-0-CEM-Connector-Test-Procedure-608932-Rev0-9
    [26] PCI Express Card Electromechanical Specification Revision 5.0
    [27] Balanced Cable Measurement using the 4-port ENA
    https://na.support.keysight.com/faq/BalancedCable_FAQ.pdf(November 3, 2004)
    [28] Keysight Technologies, Physical Layer Test System (PLTS) 2021, 2021.
    [29] 5G NR; User Equipment (UE)radio transmission and reception; Part 2: Range 2 Standalone(3GPP TS 38.101-2 version 15.3.0 Release 15), October 2018.
    [30] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, 3rd edition, John Wiley & Sons, May. 2015.
    [31] I-PEX Inc., Micro RF Coax Connector product – CATALOG MHF 7, 2020.
    [32] R.-B. Hsu, Y.-C. Huang, C-C Lee, M.-H. Hsieh, C.-F. Yang, C.-P. Chao, S.-C. Chen, Jaisy Kung, George Wei, H.-A. Su, H.-W. Hsu,“High Frequency and High Speed Connector Design for 5GApplications,”2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taiwan, Aug 2021 (Online).
    [33] Anokiwave_AWMF_0132,
    https://www.anokiwave.com/products/awmf-0132/index.html
    [34] Anokiwave_AWMF_0133,
    https://www.anokiwave.com/products/awmf-0133/index.html
    [35] Texas Instruments MIMO Radar
    https://www.ti.com/lit/an/swra554a/swra554a.pdf?ts=1639101052405&ref_url=https%253A%252F%252Fe2echina.ti.com%252F
    [36]李佳哲,「高速光電連接器與毫米波雷達天線及饋入架構之設計」,國立臺灣科技大學,中華民國109年7月。
    [37] J. D. Díaz et al., “A Cross-Stacked Radiating Antenna With Enhanced Scanning
    Performance for Digital Beamforming Multifunction Phased-Array Radars,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 10, pp. 5258-5267, Oct. 2018, doi: 10.1109/TAP.2018.2862252.
    [38]林宥樺,「毫米波雷達與Ka頻段衛星通訊之陣列天線設計及主動式天線OTA近場量測技術」,國立臺灣科技大學,中華民國111年1月。
    [39] 3GPP, “3GPP TS 38.141-2 version 16.4.0 Release 16,” ETSI TS 138 141-2 V16.4.0
    (2020-07)
    [40]Cheng-Yu Ho, Ming-Fong Jhong, Po-Chih Pan, Chih-Yi Huang, Chen-Chao Wang,
    and Chun-Yen Ting, “Integrated Antenna-in-Package on Low-Cost Organic Substrate for Millimeter-Wave Wireless Communication Applications,” 2017 IEEE 67th Electronic Components and Technology Conference.
    [41]NSI-MI, Compact Range Systems
    https://www.nsi-mi.com/products/system-solutions/compact-range-systems (January 17, 2022)
    [42]謝明皓、羅登郁、游博丞、蘇逸龍、林宥樺、楊直峰、楊成發、陳筱青,
    Ka頻段衛星通信陣列天線設計,「第30屆國防科技學術研討會論文集」 (October 11, 2021)
    [43] C.-L. Liao, Y.-H. Lin, Ike Lin, B.-C. You, C.-F. Yang, D.-X. Song, W.-J. Liao, Y.-C. Hou and T.-J. Huang, “Using a VNA Based Spherical Near Field Antenna Measurement System for Active Antenna System Performance Verifications,” to be presented in the 44th Annual Meeting and Symposium of the Antenna Measurement Techniques Association (AMTA 2022), Denver, CO, USA, October 9-14, 2022.

    無法下載圖示 全文公開日期 2027/08/22 (校內網路)
    全文公開日期 2027/08/22 (校外網路)
    全文公開日期 2027/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE