簡易檢索 / 詳目顯示

研究生: 柴世融
Shih-jung Chai
論文名稱: 3D IC構裝中之Cu/Sn/Ni三明治反應偶之界面反應
Interfacial Reactions in the Cu/Sn/Ni Sandwich Couples in 3D IC Packaging
指導教授: 顏怡文
Yee-wen Yen
口試委員: 陳志銘
C. M. Chen
吳子嘉
Albert T. Wu
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 3D IC 構裝Cu/Sn/Ni反應偶界面反應相轉變介金屬相
外文關鍵詞: 3D IC packaging, Cu/Sn/Ni couples, interfacial reaction, phase transition, IMCs
相關次數: 點閱:321下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

時代不斷的進步,當前已由3D IC構裝取代傳統2D構裝。在3D IC構裝中,由垂直堆疊方式將多種晶片構裝於中,並利用軟銲方式使連接晶片-晶片端。當焊接過後,此銲點結構為Cu/Sn/Ni之三明治結構。然而本實驗將對Cu/Sn(5 m)/Ni、Cu/Sn(10 m)/Ni和Cu/Sn(15 m)/Ni之反應偶在250oC迴焊1、3和5分鐘並在180oC時效至300小時之界面反應探討,然而由實驗結果得知可分為兩個部份;在相同迴焊條件下:隨著Sn層厚度增加,其Sn層完全消耗之時效階段也隨之增加;但在相同迴焊3與5分鐘隨Sn層厚度增加,發生相轉變時間越晚,反之在迴焊1分鐘並未出現此現象;然而在相同迴焊1分鐘下,此Cu3Sn厚度隨Sn層厚度增加而減少,但在迴焊3與5分鐘其Cu3Sn相之厚度均差不多。在相同Sn層厚度下:隨著迴焊時間增加,其Sn層消耗之時效階段越早且相轉變階段提早,但當Sn層厚度為15m並未出現此現象;然而Cu3Sn相之厚度隨著迴焊時間增加而減少。就整體來看,此Cu3Sn相之厚度隨著時效時間增加而增加且在經過時效300小時之後並未發現Ni原子擴散至Cu3Sn相中,因此推測(Cu, Ni)6Sn5相為Ni原子擴散至Cu3Sn相之擴散阻障層。


The 3-D IC electrical packaging instead of 2-D traditional electrical packaging as the technique continuous improve with times. In 3-D IC electrical packaging system, used the vertical chip stacking technique, which allow the multiple chips placed the system, and use the soldering to connect between chip and chip. The solder joint is Cu/Sn/Ni sandwich structure after soldering process. The experimental purpose prepared the three different couples; the Cu/Sn(5 m)/Ni, Cu/Sn(10 m)/Ni and Cu/Sn(15 m)/Ni. During reflowed at 250oC for 1, 3 and 5 min., and then aged at 180oC until to 300 h. Observed to the interface reaction. The results attributed to 2 parts; at the same reflowed condition, the aged stage of consumed completely of Sn layer increase with the thickness of Sn layer increased; at reflowed for 3 and 5 min., if the thickness of Sn layer increased, the phase transition occurred lately, but reflowed for 1 min. did not occurred lately; at reflowed for 1 min., the thickness of Cu3Sn increase with the thickness of Sn layer increase, but the thickness of the Cu3Sn almost at reflowed for 3 and 5 min.. At the same thickness of Sn layer, the aged stage of consumed completely of Sn layer and the phase transition time will earlier with increase the reflowed time, but the Cu/Sn(15 m)/Ni couples did not occurred this phenomenon; the thickness of Cu3Sn decrease with increasing the reflowed times. Summary, the thickness of Cu3Sn increase with increasing aged times and we didn’t find the Ni atom in Cu3Sn during aged process at 300h, so the (Cu, Ni)6Sn5 was the diffusion layer for the Ni atom diffuse to Cu¬3Sn.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章 前言 1 第二章 文獻回顧 3 2-1 電子構裝技術簡介 3 2-1.1 覆晶接合技術 4 2-1.2 球柵陣列式構裝技術 6 2-2無鉛銲料之規範 7 2-3 3D IC技術 7 2-3.1介金屬成長與其分佈對具微量銲料之微接點性質之影響 9 2-3.2 3D IC微接點造成界面反應中體積改變之影響 11 2-4界面反應之原理 12 2-4.1介金屬相之生長 12 2-4.2擴散理論機制 12 2-4.3銲料的體積效應 13 2-5界面反應相關文獻 15 2-5.1 Sn/Cu界面反應 15 2-5.2 Sn/Ni之界面反應 16 2-5.3 Sn-Cu/Ni之界面反應 17 2-5.4 Sn-Ag-Cu/Ni之界面反應 19 2-5.5 Cu/Sn/Cu之界面反應 19 2-5.6 Ni/Sn/Cu之界面反應 23 第三章 研究方法 25 3-1反應偶製備 25 3-1.1銅片基材處理 25 3-1.2電鍍實驗 26 3-2界面反應 27 3-3界面分析方法 27 第四章 研究結果與討論 32 4-1 Cu/Sn(5 m)/Ni之界面反應 33 4-2 Cu/Sn(10 m)/Ni之界面反應 51 4-3 Cu/Sn(15 m)/Ni之界面反應 66 4-4 三種反應偶對不同迴焊條件並時效至300小時之界面反應比較 80 4-5不同時效時間對Cu3Sn厚度之影響 99 4-5.1在相同反應偶中探討不同迴焊時間並時效至300小時 99 4-5.2 相同迴焊條件下並時效至300小時,探討不同反應偶與Cu3Sn相之厚度關係 102 第五章 結論 105 參考文獻 107

[1] 田民波著、顏怡文修訂,半導體電子元件構裝技術,五南圖書館出版股份有限公司,台北,(2005),pp. 5-8。
[2] 劉雨雯,RoHS綠色指令:全球環境規範&無鉛銲接技術,龍璟文化事業股份有限公司,台北。(2005)
[3] J.W. Yoon, S.W. Kim and S.B. Jung, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn-Ag-Cu solder on electrolytic Ni BGA substrate.”, J. Electron. Mater., 392 (2005) 247-252.
[4] 江昱成,BGA構裝中SAC與SACNG無鉛銲料與Au/Ni/Cu多層結構之界面反應與銲點的破壞性質,國立台灣科技大學化學工程系碩士論文。(2008)
[5] 李魁斌,銅與鎳在銲料中的交互作用,國立中央大學化學工程與材料工程研究所碩士論文。(2005)
[6] 楊素純,銅濃度、體積及溫度的综合效應對錫銀銅銲料與鎳基板間界面反應之研究,國立台灣大學工學院材料科學與工程學系博士論文。(2010)
[7] A.Munding, H. Hubner, A. Kaiser, S. Penka, P. Benkart, and E. Kohn, Wafer Level 3-D ICs Process Technology, A. Munding, Springer Sci. & Bus. Media, (2008) 132
[8] 高振宏,TPCA教育訓練課程,Solder Bump Technologies. (2002).
[9] D. P. Seraphim, R. C. Lasky and C-Y. Li, “Principle of Electronic Package.”, McGraw-Hill, New York. (1993).
[10] T. Shimoto, K. Baba, K. Matsui, J. Tsukano, T. Maeda, and K. Oyachi, “Ultra-thin high-density LSI packaging substrate for advanced CSPs and SiPs.”, Microelectron. Reliab., 45 (2005) 567-574.
[11] T. Shimoto, K. Kikuchi, K. Baba, K. Matsui, H. Honda, and K. Kata, “High-performance FCBGA based on multi-layer thin-substrate packaging technology .”, Microelectron. Reliab., 44 (2004) 515-520.
[12] Munding, A., Kaiser, A., Benkart, P., Bschorr, M., Heittmann, A., Hbner, H., Pfleiderer, H.-J., Ramacher, U., and Kohn, E.,Chip Stacking Technology for 3D-Integration of Sensor Systems, HETECH 2004, 13th European workshop on heterostructure technology, October 2004, Heraklion, Greece, 2004.
[13] 莊鑫毅,具微量銲料之3D IC尺度接點界面反應特徵研究,國立台灣大學工學院材料科學與工程學系博士班研究計畫報告書。(2011)
[14] J. F. Li, P. A. Agyakwa, C. M. Johnson, “interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process.”, Acta Mater. 59 (2011) 1198-1211.
[15] W. D. Callister, Materials Science and Engineering, An introduction, 5th edition, John Wiley & Sons.
[16] H. P. R. Frederiks, R. J. Fields and A. Feldman, “Thermal and electrical properties of copper-tin and nickel-tin intermetallics.”, J. Appl. Phys., 72(1992) 2879.
[17] R. J. Tarento and G. Blaise, “Studies of the First Steps of Thin Film Interdiffusion in the Al-Ni System.”, Acta Metall., 37 (1989) 2305-2312.
[18] N. Saunders and A. P. Miodownik, “Bulletin of Alloy Phase Diagram.”, 11 (1990) 278-287.
[19] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic thin film science: for electrical engineers and materials scientists. New York: Macmillan, (1992).
[20] http://www.electroiq.com/index/display/semiconductors-article-display/ 312378/articles/advanced-packaging/volume-16/issue-8/features/copper-cleaning-made-easy-oxidation-reduction-for-wafer-bumping.html
[21] N. Saunders and A. P. Miodownik, “Bulletin of Alloy Phase Diagrams.”, 11 (1990) 278-287.
[22] K. N. Tu and R.D. Thompson, “Kinetics of interfacial reaction in bimetallic Cu-Sn thin films.”, Acta metal. et mater., 30 (1982) 947-952.
[23] S. Bader, W. Gust and H. Hieber, “Rapid formation of intermetallic compounds interdiffusion in the Cu---Sn and Ni---Sn systems.”, Acta metal. et mater., 43 (1995) 329-337.
[24] L. H. Su, Y. W. Yen, C. C. Lin and S. W. Chen, “Interfacial reactions in molten Sn/Cu and molten In/Cu couples.”, Metall. Mater. Trans. B, 28 (1997) 927-934.
[25] P. Nash and A. Nash, Bulletin of Alloy Phase Diagram, 6 (1985) 350-359.
[26] S. W. Chen, C. M. Chen and W. C. Liu, “Electric current effects upon the Sn/Cu and Sn/Ni interfacial reaction.”, J. Electron. Mater., 27 (1998) 1193-1198.
[27] S. K. Kang and V. Ramachandran, “Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface.”, Scr. Metall., 14 (1980) 421-424.
[28] J. W. Yoon, S. W. Kim and S. B. Jung, “Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint.”, J. Alloys Compd., 414 (2006) 56-61.
[29] W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders.”, J. Mater. Res, 17 (2002) 263-266
[30] C. H. Lin, S. W. Chen and C. H. Wang, “Phase equilibria and solidification properties of Sn-Cu-Ni alloys.”, J. Electron. Mater., 31 (2002) 907-915.
[31] C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni.”, J. Electron. Mater., 31 (2002) 584-590.
[32] W. C. Luo, C. E. Ho, J. Y. Lin and C. R. Kao, “Solid state reaction between Ni and Sn-Ag-Cu solders with different Cu concentrations.”, Mater. Sci. Eng., A, 396 (2005) 385-391.
[33] ASTM F1269-89, “Test Methods for Destructive Shear Testing of Ball Bonds.”, American Society for testing of Materials. (1995).
[34] Gi-Tae Lim, Byoung-Joon Kim, Kiwook Lee, Jaedong Kim, Young-Chang Joo and Young-Bae Park, “Temperature effect on intermetallic compound growth kinetics of Cu pillar/Sn bumps.”, J. Electron. Mater., 38 (2009) 228-2233.
[35] C. W. Chang, S. C. Yang and C. R. Kao, “Cross-interaction between Ni and Cu across Sn layers with different thickness.”, J. Electron. Mater., 36 (2007) 1455-1461
[36] K. K. Hong, J. B. Ryu, C. Y. Park and J. Y. Huh, “Effect of cross-interaction between Ni and Cu on growth kinetics of intermetallic compounds in Ni/Sn/Cu diffusion couples during aging.”, J. Electron. Mater., 37 (2006) 61-72
[37]王儀雯,添加銅鎳至銲料中探討抑制微孔洞以及Cu3Sn的機制,國立 台灣大學工學院材料科學與工程學系博士論文。(2010)

QR CODE