簡易檢索 / 詳目顯示

研究生: 郭士銨
Shih-An Kuo
論文名稱: 基於 MATLAB、 Simulink及 TwinCAT之機械手臂模擬及控制
Robot Arm Simulation and Control using MATLAB, Simulink and TwinCAT
指導教授: 李維楨
Wei-chen Lee
口試委員: 李維楨
Wei-chen Lee
劉孟昆
Meng-Kun Liu
林貴皇
Gui-Huang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: MATLABSimulinkTwinCAT機器人運動學模擬機器人控制實際環境模擬
外文關鍵詞: MATLAB, Simulink, TwinCAT, Robotics Simulation, Actual Environment Simulation, Robot Control
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工廠生產線能夠逐漸由人工轉變為自動化,其中機械手臂的使用是一大關鍵。以往在生產線設計的過程中,機械手臂選型只能根據規格進行挑選,過程中可能會因為無法觀看實際機械手臂動作情形而導致選擇的型號不完全符合實際需求,此外在建立移動路徑及控制器調試上必須配合實際機械手臂進行,透過此方式須經過繁瑣的流程才能夠進行測試,導致開發效率降低。本研究的目的為提出了一個結合運動學及運動控制模擬、實際環境模擬及實機控制的系統以提升自動化產線中機械手臂開發的效率。其中使用MATLAB進行運動學及運動控制模擬,藉由MATLAB建立虛擬機械手臂及運動學以幫助使用者進行路徑規劃及確認機械手臂根據路徑移動的情形,而實際環境模擬藉由Simulink建立,帶入根據需求而設計的模擬流程及機械手臂慣性參數,能夠幫助使用者在接觸真實機械手臂前能夠事先進行控制器軟體的設計及模擬,以找出適合生產線的移動流程、路徑及控制器參數,實機控制部分則是透過MATLAB及TwinCAT建構出所需軟體環境,將運動學模擬計算結果透過TwinCAT進行實機測試驗證。最後由實際案例可看到,經由本研究建立的視覺化介面能夠幫助使用者在進行路徑規劃時能夠透過3D畫面確認是否正確,且透過實機測試驗證結果,此外也能夠透過系統中實際環境模擬架構,針對需求進行環境建立及模擬,藉此可驗證此系統確實能夠幫助使用者進行機械手臂軟體開發。


    As the production line have gradually changed from manual to automate, the main key is the use of robot arms. In the past, engineer could only select the equipment by specifications and could not have the view of actual robot action during the design of the production line. In addition, engineer may go through a complicated process to establish motion path and adjust controller parameters by actual robot.

    The purpose of the study proposes a system combining kinematics and motion control simulation, actual environment simulation and robot control to help engineer to design motion path and adjust controller parameters before using the actual robot arm. In the study, we use MATLAB for kinematics and Control design simulation to help the user to carry out the path planning and confirm the movement of the robot arm. In addition, we use Simulink for actual environment simulation. Engineer can find the suitable movement process, path and controller parameters according to the production line. The actual robot control part is to construct the required software environment through MATLAB and TwinCAT, and engineer can verify the simulation results by using TwinCAT. Finally, from the actual cases, the visual interface can help the engineer confirm the correctness of the path, and verify the results through the actual robot. Furthermore, the simulation environment can be built and simulate in the system. According to the result of the actual cases, this system can really help engineer to develop robotic software.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究目的 3 第二章 運動學 4 2.1 正向運動學 4 2.2 逆向運動學 8 第三章 使用軟體及設備介紹 11 3.1 使用軟體介紹 11 3.1.1 SolidWorks – SolidWorks to URDF Exporter 11 3.1.2 MATLAB & Simulink 12 3.1.3 TwinCAT 12 3.2 機械手臂 13 3.3 馬達驅動器 14 第四章 系統架構 17 4.1 模擬環境架構介紹 17 4.1.1 運動學模擬&任務模擬流程 18 4.1.2 運動學模擬–視覺化顯示 19 4.1.3 運動學模擬–建立座標轉換關係&正/逆向運動學 20 4.1.4 任務模擬–建立座標轉換關係&視覺化顯示 21 4.1.5 任務模擬–正/逆向運動學 22 4.1.6 任務模擬–控制器&運動控制 25 4.1.7 任務模擬–動作邏輯 27 4.1.8 連結機械手臂 32 4.2 硬體環境架構介紹 34 4.3.1 寫入及讀取變數 35 4.3.2 機械手臂控制程式 35 4.3.3 本機端與設備之連線 38 第五章 實際案例 42 5.1 視覺化介面介紹 42 5.1.1 旋轉軸移動模擬 43 5.1.2 末端點移動模擬 44 5.1.3 移動路徑模擬 44 5.1.4 機械手臂連結及控制 45 5.1.5 任務模擬參數設定介面 45 5.2 實際案例結果 46 5.2.1 實際案例–運動學模擬 46 5.2.2 實際案例–任務模擬 54 第六章 結論及未來展望 60 6.1 結論 60 6.2 未來展望 61 參考文獻 62 附錄 64

    [1] L. Žlajpah, "Simulation in robotics," Mathematics and Computers in Simulation, vol. 79, no. 4, pp. 879-897, 2008/12/15/ 2008.
    [2] Z. Leon, "Robot Simulation for Control Design," 2010.
    [3] S. A. Ajwad, J. Iqbal, M. I. Ullah, and A. Mehmood, "A systematic review of current and emergent manipulator control approaches," Frontiers of Mechanical Engineering, vol. 10, no. 2, pp. 198-210, 2015/06/01 2015.
    [4] P. I. Corke, "A robotics toolbox for MATLAB," IEEE Robotics & Automation Magazine, vol. 3, no. 1, pp. 24-32, 1996.
    [5] A. Breijs, B. Klaassens, and R. Babuška, "MATLAB DESIGN ENVIRONMENT FOR ROBOTIC MANIPULATORS," IFAC Proceedings Volumes, vol. 38, no. 1, pp. 373-378, 2005/01/01/ 2005.
    [6] R. Falconi and C. Melchiorri, "RobotiCad: an Educational Tool for Robotics," IFAC Proceedings Volumes, vol. 41, no. 2, pp. 9111-9116, 2008/01/01/ 2008.
    [7] A. Gil, Ó. Reinoso, J. Marín, L. Payá, and J. Ruiz Ramírez, Development and deployment of a new robotics toolbox for education: Development and Deployment of a New Robotics. 2014.
    [8] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, KCT: a MATLAB toolbox for motion control of KUKA robot manipulators. 2010, pp. 4603-4608.
    [9] M. A. González-Palacios, E. A. González-Barbosa, and L. A. Aguilera-Cortés, "SnAM: a simulation software on serial manipulators," Engineering with Computers, vol. 29, no. 1, pp. 87-94, 2013/01/01 2013.
    [10] Q. Mohammed Abu, I. Abuhadrous, and H. Elaydi, "Modeling and Simulation of 5 DOF educational robot arm," in 2010 2nd International Conference on Advanced Computer Control, 2010, vol. 5, pp. 569-574.
    [11] E. Dean-Leon, S. Nair, and A. Knoll, "User friendly Matlab-toolbox for symbolic robot dynamic modeling used for control design," in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 2181-2188.
    [12] 陳政安, "6自由度機械手臂系統之建置與實作探討," 碩士論文, 電機工程學系, 義守大學, 2008.
    [13] F. Piltan, M. Hossein Yarmahmoudi, M. Shamsodini, E. Mazlomian, and A. Hosainpour, PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. 2012, pp. 167-191.
    [14] P. Jamali and K. Heidari Shirazi, Robot Manipulators: Modeling, Simulation and Optimal Multi-Variable Control. 2012, pp. 383-387.
    [15] R. ul Islam, J. Iqbal, and Q. Khan, "Design and comparison of two control strategies for multi-DOF articulated robotic arm manipulator," Control Engineering and Applied Informatics, Article vol. 16, no. 2, pp. 28-39, 2014.
    [16] 吳威昇, "以模糊控制理論為基礎之六軸機械手臂模擬," 碩士論文, 機械工程系, 國立臺灣科技大學, 2017.
    [17] M. Hadi Barhaghtalab, V. Meigoli, M. R. Golbahar Haghighi, S. A. Nayeri, and A. Ebrahimi, "Dynamic analysis, simulation, and control of a 6-DOF IRB-120 robot manipulator using sliding mode control and boundary layer method," Journal of Central South University, vol. 25, no. 9, pp. 2219-2244, 2018/09/01 2018.
    [18] G. Shuai, S. Zhuoyuan, W. Zhiyong, and M. M. Islam, "Beckhoff based arm control system design for Elderly Assisting Robot," in 2011 IEEE International Conference on Automation and Logistics (ICAL), 2011, pp. 1-5.
    [19] M. Proskuriakov, "Control of a hydraulic servo system using Beckhoff real time data acquisition computer based on MATLAB/SIMULINK platform," Master, School of Energy Systems, Mechanical Engineering, Lappeenranta University of Technology, 89, 2018.
    [20] L. Fan, J. Bai, F. Liu, C. Yang, and X. Qin, "Software Realization of Gantry Welding Robot Control System with PC+ Soft NC Mode," in 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), 2018, pp. 251-255.
    [21] MathWorks File Exchange and Don Riley. (2003). CAD2MATDEMO.M. Available: https://www.mathworks.com/matlabcentral/fileexchange/3642-cad2matdemo-m
    [22] MathWorks File Exchange and Pasc Peli. (2016). Puma Robot Simulation. Available: https://www.mathworks.com/matlabcentral/fileexchange/59663-puma-robot-simulation
    [23] MathWorks File Exchange and Steve Miller. (2017). Robot Arm with Conveyor Belts. Available: https://www.mathworks.com/matlabcentral/fileexchange/61370-robot-arm-with-conveyor-belts

    無法下載圖示 全文公開日期 2025/01/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE