簡易檢索 / 詳目顯示

研究生: 趙天新
Tian-Shin Chao
論文名稱: 智慧變流器應用於具太陽能發電之配電饋線電壓控制
Smart Inverter Applied to Voltage Control of Distribution Feeder with Photovoltaic Generation
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 辜志承
Jyh-Cherng Gu
連國龍
Kuo-Lung Lian
郭明哲
Ming-Tse Kuo
吳啟瑞
Chi-Jui Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 太陽能發電虛功率調控配電系統智慧變流器電壓控制
外文關鍵詞: photovotaic generation, distribution systems, reactive power control, smart inverter, voltage control
相關次數: 點閱:1511下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究太陽能智慧變流器之虛功率調控方法與設計,並將其運用於併有多具太陽能發電之配電饋線系統改善電壓。本研究使用MATLAB/Simulink來建立配電系統模型,為了使智慧變流器精準地控制由再生能源所送出的實功率與虛功率,故以鎖相環為基礎架構,設計具有集中與分散式控制的虛功率調控模式,並改善其補償追逐之問題。接著建立代表性的配電饋線範例系統作為模擬與分析使用,最後整合變電所內並聯電容器、饋線調壓器與智慧變流器,探討設備間之協調。為探討電壓控制效果,分別模擬與分析晴天、多雲與雨天不同太陽能發電量與負載之情境,結合夏月住宅型之24小時逐時負載,觀察全日電壓狀況與智慧變流器之補償情形。最後對智慧變流器提出建議設定方式,預期能提供實務運轉上的助益。


    This thesis studies the reactive power control method and design of photovoltaic smart inverter, and implementation in distribution system with multiple photovoltaic generations to improve the voltage issue. This study uses MATLAB/Simulink to establish a distribution system model. In order to make the smart inverter accurately control the real power and reactive power sent by the photovoltaic source, the phase-locked loop is used as the infrastructure to design the reactive power control mode with centralized and decentralized control, and to improve the problem of compensating for hunting. A representative distribution feeder example system for simulation and analysis is established, and finally integrate parallel capacitors, feeder regulators and smart converters to explore the coordination between equipment are integrated. In order to probe the effect of voltage control, the situation of solar power generation in sunny, cloudy and rainy days are simulated, 24-hr load of summer residential type is used, the full-day voltage status and smart inverter compensation situation are observed. Finally, the proposed setting method for the smart inverter is expected to provide practical operation benefits.

    摘要 iii Abstract iv 誌謝 v 目錄 vi 圖目錄 x 表目錄 xix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 研究目標與步驟 6 1.4 論文架構概述 8 第二章 配電系統架構與再生能源發展 10 2.1 簡介 10 2.2 配電系統架構 11 2.3 負載模型 14 2.4 太陽光電發展 17 2.5 再生能源併網規範 20 2.5.1再生能源併聯技術要點 20 2.5.2太陽光電之特性要求 23 第三章 配電饋線電壓控制方法 26 3.1 簡介 26 3.2 配電饋線電壓變動及電壓控制原理 26 3.3 電壓控制設備與動作原理 28 3.3.1 並聯電容器 28 3.3.2 有載分接頭切換器 31 3.3.3 饋線調壓器 34 3.3.4 智慧變流器 38 3.4 分接頭切換設備電壓調整方法 45 3.5 台電現行之電壓控制模式 47 3.6 台電電力系統電壓控制目標 52 第四章 智慧變流器之虛功率控制設計 54 4.1 前言 54 4.2 鎖相環 54 4.3 虛功率調控模式之設計 56 4.3.1 固定功率因數調控模式 56 4.3.2 實功率-虛功率調控模式 56 4.3.3 電壓-虛功率調控模式 57 4.3.4 電壓-功率因數調控模式 58 4.4 統一式控制法 59 4.5 智慧變流器虛功率輸出鎖定法 60 第五章 含太陽能發電與智慧變流器之配電饋線模擬 61 5.1 模擬系統架構及參數 61 5.2 模擬軟體介紹 63 5.3 情境設定與電壓控制方法 64 5.3.1 情境設定 64 5.3.2 智慧變流器調控方法 66 5.4 晴天時之情境模擬 67 5.5 多雲時之情境模擬 84 5.6 雨天時之情境模擬 101 5.7 調整智慧變流器延遲時間之模擬 103 5.8 本章小結 106 第六章 加入饋線調壓器和並聯電容器之配電饋線模擬 108 6.1 前言 108 6.2 加入饋線調壓器後之情境設定及電壓控制方法 108 6.3晴天時之情境模擬 109 6.4 調整延遲時間之模擬 121 6.5 本章小結 125 第七章 結論及未來研究方向 126 7.1 結論 126 7.2 未來研究方向 128 參考文獻 129 附錄 135

    [1] 經濟部能源局,「能源發展綱領」,2012。
    [2] 國家發展委員會,「綠能政策目標未來規劃及執行現狀書面報告」,2016。
    [3] 經濟部能源局,陽光屋頂百萬座,2017,網址: http://mrpv.org.tw/
    [4] 經濟部能源局,「太陽光電2年推動計畫」,2016。
    [5] 周昱緯,「一次變電所電壓及虛功率控制」,碩士學位論文,國立臺灣科技大學,台北市,2014。
    [6] 柯喬元,「一次變電所電壓及虛功率控制靈敏度分析」,碩士學位論文,國立臺灣科技大學,台北市,2010。
    [7] 台灣電力股份有限公司,「配電技術手冊(四)地下配電線路設計」,1996。
    [8] 胡竣翔,「配電饋線電壓控制方法及改善策略」,碩士學位論文,國立臺灣科技大學,台北市,2015。
    [9] 林勉海,「具太陽發電之二次變電所主變壓器轄區電壓控制」,碩士學位論文,國立臺灣科技大學,台北市,2017。
    [10] M. Surprenant, I. Hiskens and G. Venkataramanan, "Phase locked loop control of inverters in a microgrid," 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, pp. 667-672, 2011.
    [11] B. Indu Rani, C.K. Aravind, G. Saravana Ilango, C. Nagamani, A three phase PLL with a dynamic feed forward frequency estimator for synchronization of grid connected converters under wide frequency variations, International Journal of Electrical Power & Energy Systems, Volume 41, Issue 1, Pages 63-70, 2012.
    [12] D. Dong, B. Wen, D. Boroyevich, P. Mattavelli and Y. Xue, "Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions," in IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 310-321, Jan. 2015.
    [13] D. Jovcic, "Phase locked loop system for FACTS," in IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1116-1124, Aug. 2003.
    [14] 江龍生,「考慮風力發電機併網之配電饋線電壓控制研究」,碩士學位論文,國立臺灣科技大學,台北市,2005。
    [15] 郭芳楠,「分散型電源併入配電系統對饋線電壓變動之研究」,碩士學位論文,國立臺北科技大學,台北市,2005。
    [16] 崔文吉,「配電系統中考慮分散式電源併聯的電壓控制策略」,碩士學位論文,國立中山大學,高雄市,2007。
    [17] 蘇品文,「具太陽能發電之配電饋線電壓控制」,碩士學位論文,國立臺灣科技大學,台北市,2016。
    [18] M. Watanabe, K. Matsuda, T. Futakami, K. Yamane, and R. Egashira, “Control method for voltage regulator based on estimated amount of photovoltaic generation power,” Proceedings of the China International Conference on Electricity Distribution, Shanghai, China, pp. 1-4, Sept. 2012.
    [19] C. Long and L. F. Ochoa, “Voltage Control of PV-Rich LV Networks: OLTC-Fitted Transformer and Capacitor Banks,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4016-4025, Nov. 2016.
    [20] S. Kawano, S. Yoshizawa, Y. Fujimoto, and Y. Hayashi, “The basic study for development of a method for determining the LDC parameters of LRT and SVR using PV output forecasting,” Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, pp. 1-5, Feb. 2015.
    [21] S. Kawano, S. Yoshizawa, and Y. Hayashi, “Method for enumerating feasible LDC parameters for OLTC and SVR in distribution networks,” Proceedings of the 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Prague, Czech Republic, pp. 1-5, June. 2016.
    [22] L. M. Mufaris, J. Baba, S. Yoshizawa, and Y. Hayashi, “Determination of dynamic line drop compensation parameters of voltage regulators for voltage rise mitigation,” Proceedings of the International Conference on Clean Electrical Power (ICCEP), Taormina, Italy ,pp. 319-325, June. 2015.
    [23] Electric Power Research Institute (EPRI), “Common Functions for Smart Inverters”, Version 3, 2012.
    [24] M. J. Reno, R. J. Broderick, and S. Grijalva, “Smart inverter capabilities for mitigating over-voltage on distribution systems with high penetrations of PV,” Proceedings of the IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, pp. 3153-3158, June. 2013.
    [25] J. W. Smith, W. Sunderman, R. Dugan, and B. Seal, “Smart inverter volt/var control functions for high penetration of PV on distribution systems,” Proceedings of the IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, pp. 1-6, March. 2011.
    [26] Abdul Motin Howlader, Staci Sadoyama, Leon R. Roose, Saeed Sepasi, Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study, Renewable Energy, Volume 127, Pages 145-157, 2018.
    [27] P. M. S. Carvalho, P. F. Correia and L. A. F. M. Ferreira, "Distributed Reactive Power Generation Control for Voltage Rise Mitigation in Distribution Networks," in IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 766-772, May 2008.
    [28] M. Hojo, H. Hatano and Y. Fuwa, "Voltage rise suppression by reactive power control with cooperating photovoltaic generation systems," CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1, Prague, Czech Republic, pp. 1-4, 2009.
    [29] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, “A Multi-Mode Control Strategy for VAr Support by Solar PV Inverters in Distribution Networks,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1316-1326, 2015.
    [30] M. Chamana and B. H. Chowdhury, “Impact of smart inverter control with PV systems on voltage regulators in active distribution networks,” Proceedings of the 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), Charlotte, NC, USA, pp. 115-119, Dec. 2014.
    [31] R. Zafar and J. Ravishankar, “Coordinated control of step voltage regulator and D-STATCOM in the presence of distributed photovoltaic systems,” Proceedings of the IEEE International Conference on Power System Technology (POWERCON), Wollongong, NSW, Australia, pp. 1-6, Oct. 2016.
    [32] S. R. Abate, T. E. McDermott, M. Rylander, and J. Smith, “Smart inverter settings for improving distribution feeder performance,” Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, pp. 1-5, July. 2015.
    [33] T. Rizy, H. Li, F. Li, Y. Xu, S. Adhikari, and P. Irminger, “Impacts of varying penetration of distributed resources with & without volt/var control: Case study of varying load types,” Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, pp. 1-7, July. 2011.
    [34] 經濟部能源局,能源供給與國內能源消費及能源供給(按自產與進口別),2018。
    [35] 台灣電力公司,再生能源發展簡介,2019,網址: http://www.taipower.com.tw/
    [36] 經濟部能源局,「再生能源發展條例」,2019。
    [37] IRENARE, RE_Capacity_Statistics, 2019.
    [38] IEA, PVPS_T1_35_Snapshot2019-Report, 2019.
    [39] 台灣電力股份有限公司,「台灣電力股份有限公司再生能源發電系統併聯技術要點」,2016。
    [40] 經濟部標準檢驗局,「太陽光電系統-電力傳輸網介面之特性要求」,2018。
    [41] 蘇勝一,「提高分散式電源併聯容量之饋線開關及電壓整合控制」,碩士學位論文,國立中山大學,高雄市,2009。
    [42] 王耀諄,「電力系統品質」,新文京開發出版股份有限公司,2005。
    [43] 羅欽煌,「工業配電」,全華圖書股份有限公司,2008。
    [44] W. H. Kersting, “Distribution System Modeling and Analysis,” 2nd edition, CRC Press, 2006.
    [45] 能源知識庫,再生能源併網政策研究與技術推動計畫,2016。網址: http://km.twenergy.org.tw/
    [46] Y. Xue and J. M. Guerrero, “Smart Inverters for Utility and Industry Applications,” Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, Germany, pp. 1-8, May. 2015.
    [47] E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and U. Borup, “Evaluation of the voltage support strategies for the low voltage grid connected PV generators,” Proceedings of the IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, pp. 710-717, Sept. 2010.
    [48] 台灣電力股份有限公司,「SCADA區域調度運轉技術文件」,2005。
    [49] 台灣電力股份有限公司,「電力系統運轉操作章則彙編」,2012。
    [50] 台灣電力股份有限公司,「輸電系統規劃準則」,2013。
    [51] 李家騏,「利用智慧變流器虛功率調控於配電饋線電壓控制」,碩士學位論文,國立臺灣科技大學,台北市,2018。
    [52] 王閔賢,「分散型發電併網運轉對配電系統常用電壓控制方法衝擊與影響研究」,碩士學位論文,國立臺灣科技大學,台北市,

    無法下載圖示 全文公開日期 2024/07/07 (校內網路)
    全文公開日期 2024/07/07 (校外網路)
    全文公開日期 2024/07/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE