簡易檢索 / 詳目顯示

研究生: 鍾培勻
Pei-Yun Zhong
論文名稱: 基於多重柏拉圖最佳化之配電變壓器OLTC與電容器排程研究
Study on Day-ahead Scheduling of Distribution Transformer OLTC and Capacitors by Multi-Pareto Optimality
指導教授: 楊念哲
Nien-Che Yang
口試委員: 楊念哲
Nien-Che Yang
黃維澤
Wei-Tzer Huang
張建國
Chien-Kuo Chang
曾威智
Wei-Chih Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 有載分接頭切換器可切換式電容器柏拉圖前緣曼哈頓距離配電系統電壓控制
外文關鍵詞: on-load tap changer, switched capacitor, Pareto frontier, Manhattan distance, distribution system voltage control
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種多目標最佳化方法來解決配電系統日前電壓控制問題,主要目的是根據日前負載變動下來決定變電所有載分接開關(on load tap changer, OLTC)和可切換式電容器(switched capacitor, SC)設置的最佳排程。本研究中提出的目標函數考量OLTC和SC的切換限制:(1)最小化主變壓器匯流排上的電壓偏差,(2)最小化系統總功率損失。將多目標粒子群算法與柏拉圖前緣相結合,利用曼哈頓距離作為求解指標來評估多目標問題。此外,該方法進一步考慮分散式能源發電(distributed generation, DG)的不確定性。本文採用Digsilent-Powerfactory結合Matlab 2016a版。在模擬中研究不同的DG併網點和運轉情境對電壓控制調度的影響,之後再考慮結合智慧變流器的區域控制策略,最後通過 IEEE 33 BUS 測試系統驗證該方法的效率和性能。


    In this thesis, a multi-objective optimization method is proposed to solve the day-ahead voltage control problems in distribution systems. The main purpose of this thesis is to determine the optimal schedule for on-load tap changer (OLTC) settings at the substation and the switched capacitors (SC) based on the day-ahead load forecasting. The objective functions presented in this study are: (1) minimizing voltage deviation at the main transformer bus, and (2) minimizing total power losses within switching limits of OLTC and SC. The multi-objective particle swarm algorithm is combined with the Pareto front and the Manhattan distance is applied as a solution index to assess these multi-objectives problems. In addition, the uncertainty of distributed generation (DG) is further considered in the proposed method. The Digsilent-Powerfactory combined with Matlab 2016a software packages are used in the thesis. In the simulations, the effects of different DG grid-connected points and operation scenarios on the voltage control scheduling are examined. Afterward, the regional control strategy combined with the smart inverter is taken into consideration. Finally, the efficiency and performance of this proposed method is verified by the IEEE 33 BUS test system.

    摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 2 1.3 研究貢獻 3 1.4 論文架構概述 3 第二章 配電系統與再生能源發展介紹 5 2.1 前言 5 2.2 配電系統架構 5 2.2.1 配電線路設施 6 2.2.2 配電系統型態 7 2.2.3 負載模型 11 2.3 再生能源發展趨勢 14 2.3.1 國外再生能源發展 15 2.3.2 國內再生能源發展 17 2.4 再生能源併網法規 19 2.4.1 國外再生能源法規 19 2.4.2 國內再生能源法規 22 2.5 結語 24 第三章 電壓控制設備與控制方法介紹 25 3.1 前言 25 3.2 電壓控制設備與動作原理 25 3.2.1 有載分接頭切換器 25 3.2.2 可切換式電容器 27 3.2.3 智慧變流器 27 3.3 電壓控制法 31 3.3.1 電壓準位法 31 3.3.2 LDC法 32 3.3.3 台電RPDC電壓與虛功控制法 34 3.4 各電壓控制法綜合分析評估 39 3.5 台電電力系統電壓控制目標 40 3.6 結語 41 第四章 多目標最佳化OLTC抽頭與電容器排程 43 4.1 前言 43 4.2 最佳化演算法 43 4.2.1 粒子群演算法 43 4.2.2 多目標最佳化問題 47 4.2.3 柏拉圖最佳化 47 4.2.4 粒子群演算法與柏拉圖最佳化 49 4.2.5 曼哈頓距離 52 4.3 排程問題描述與函數建立 53 4.3.1 目標函數與限制條件 54 4.3.2 限制條件 55 4.4 一日排程方法 57 4.4.1 依據日前DG發電下排程 57 4.4.2 考量DG發電不穩定性下排程 60 4.5 結語 66 第五章 測試系統分析與比較 67 5.1 前言 67 5.2 模擬系統建構及參數設定 67 5.3 評估指標 71 5.3.1 所有匯流排的電壓偏差(voltage deviation) 71 5.3.2 電壓變動(voltage violation) 71 5.3.3 總系統損失(total losses) 72 5.3.4 誤差值(error value) 72 5.4 正常運轉條件下模擬結果 73 5.4.1 未併入DG 73 5.4.2 併入DG依據日前DG發電下排程模擬結果 74 5.4.3 併入DG考量DG發電不穩定性下排程模擬結果 86 5.5 轉供運轉情境下模擬結果 93 5.5.1 未加入智慧變流器的虛功-電壓控制 94 5.5.2 加入智慧變流器的虛功-電壓控制 99 5.6 演算法性能與IEEE 33 BUS測試 103 5.6.1 演算法性能比較 103 5.6.2 IEEE 33 BUS 104 5.7 結語 105 第六章 結論與未來研究方向 106 6.1 結論 106 6.2 未來研究方向 107 參考文獻 109

    [1] 王閔賢,「分散型發電併網運轉對配電系統常用電壓控制方法衝擊與影響研究」,碩士論文,國立臺灣科技大學電機工程系,民國九十五年。
    [2] M. Abido and J. Bakhashwain, "Optimal VAR dispatch using a multiobjective evolutionary algorithm," International Journal of Electrical Power & Energy Systems, vol. 27, pp. 13-20, 2005.
    [3] B. A. De Souza and A. M. F. De Almeida, "Multiobjective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems," IEEE Transactions on Power Systems, vol. 25, pp. 1274-1281, 2010.
    [4] R. He, G. Taylor, and Y. Song, "Multi-objective optimization of reactive power flow using demand profile classification," IEEE Power Engineering Society General Meeting, 2005, pp. 363-369, 2005.
    [5] R. He, G. Taylor, and Y. Song, "Multi-objective optimal reactive power flow including voltage security and demand profile classification," International Journal of Electrical Power & Energy Systems, vol. 30, pp. 327-336, 2008.
    [6] R.-H. Liang, Y.-K. Chen, and Y.-T. Chen, "Volt/Var control in a distribution system by a fuzzy optimization approach," International Journal of Electrical Power & Energy Systems, vol. 33, pp. 278-287, 2011.
    [7] T. Niknam, "A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators," Energy Conversion and Management, vol. 49, pp. 3417-3424, 2008.
    [8] T. Niknam, "A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering distributed generators," Applied Energy, vol. 88, pp. 778-788, 2011.
    [9] T. Niknam, B. B. Firouzi, and A. Ostadi, "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, vol. 87, pp. 1919-1928, 2010.
    [10] T. Senjyu, Y. Miyazato, A. Yona, N. Urasaki, and T. Funabashi, "Optimal distribution voltage control and coordination with distributed generation," IEEE Transactions on power delivery, vol. 23, pp. 1236-1242, 2008.
    [11] R.-H. Liang and C.-K. Cheng, "Dispatch of main transformer ULTC and capacitors in a distribution system," IEEE Transactions on Power Delivery, vol. 16, pp. 625-630, 2001.
    [12] N. Grudinin, "Reactive power optimization using successive quadratic programming method," IEEE Transactions on Power Systems, vol. 13, pp. 1219-1225, 1998.
    [13] S. Granville, "Optimal reactive dispatch through interior point methods," IEEE Transactions on power systems, vol. 9, pp. 136-146, 1994.
    [14] M. Oshiro, K. Tanaka, A. Uehara, T. Senjyu, Y. Miyazato, A. Yona, et al., "Optimal voltage control in distribution systems with coordination of distribution installations," International Journal of Electrical Power & Energy Systems, vol. 32, pp. 1125-1134, 2010.
    [15] Y. J. Kim, J. L. Kirtley, and L. K. Norford, "Reactive power ancillary service of synchronous DGs in coordination with voltage control devices," IEEE Transactions on Smart Grid, vol. 8, pp. 515-527, 2015.
    [16] 台灣電力公司,「台電供電系統簡介」,民國一百零八年。
    [17] 郭芳楠,「分散型電源併入配電系統對饋線電壓變動之研究」,碩士論文,國立臺北科技大學電機工程系所,民國九十四年。
    [18] 曾彥霖,「智慧電網節能調壓技術與潛力研究」,碩士論文,國立臺灣科技大學電機工程系,民國一百零八年。
    [19] 辜志承、朱文賢、楊明達、莊志鴻,「配電系統保護協調升級技術與效益研究」,國科會九十一年專題研究計畫,民國九十一年。
    [20] 沈混源,「常閉環路配電系統之保護協調技術與效益分析」,博士論文,國立臺灣科技大學電機工程系,民國九十五年。
    [21] 能源知識庫,「2020年全球再生能源現況報告」,民國一百零九年。
    [22] "RENEWABLE CAPACITY STATISTICS 2021," International Renewable Energy Agency (IRENA), 2021.
    [23] D. Rebollal, M. Carpintero-Rentería, D. Santos-Martín, and M. Chinchilla, "Microgrid and distributed energy resources standards and guidelines review: grid connection and operation technical requirements," Energies, vol. 14, p. 523, 2021.
    [24] Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE 1547-2018; The Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018.
    [25] Grid Connection of Energy Systems via Inverters Part 1: Installation Requirements; AS 4777.1-2016; Council of Standards Australia: Sydney, NSW, Australia, 2016.
    [26] Power Generation Systems Connected to the Low-Voltage Distribution Network—Technical Minimum Requirements for the Connection to and Parallel Operation with Low-Voltage Distribution Networks; VDE-AR-N-4105-2011; Association for Electrical, Electronic & Information Technologies (VDE): Frankfurt am Main, Germany, 2011.
    [27] Technical Requirements for Connecting Photovoltaic Power Station to Power System; GB/T 19964-2012; Standardization Administration of the P.R.C.: Beijing, China, 2012.
    [28] Requirements for Generating Plants to be Connected in Parallel with Distribution Networks—Part 1: Connection to a LV Distribution Network—Generating Plants up to and Including Type B; CLC 50549.1-2019; European Committee for Electrotechnical Standardization (CENELEC): Brussels, Belgium, 2019.
    [29] 台灣電力股份有限公司,「台灣電力股份有限公司再生能源發電系統併聯技術要點」,民國一百零七年。
    [30] 台灣電力股份有限公司,「配電技術手冊(四)地下配電線路設計」,民國八十六年。
    [31] 胡竣翔,「配電饋線電壓控制方法及改善策略」,碩士論文,國立臺灣科技大學電機工程系,民國一百零四年。
    [32] Y. Xue and J. M. Guerrero, "Smart inverters for utility and industry applications," Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, 2015.
    [33] Electric Power Research Institute, "Common Functions for Smart Inverters," Version 3, 2012.
    [34] 朱家威,「太陽光電智慧變流器之電壓調控曲線設定之研究」,碩士論文,國立高雄應用科技大學電機工程系,民國一百零七年。
    [35] 經濟部標準檢驗局,「太陽光電系統-電力傳輸網界面之特性要求」,民國一百零七年。
    [36] 李家騏,「利用智慧變流器虛功率調控於配電饋線電壓控制」,碩士論文,國立臺灣科技大學電機工程系,民國一百零七年。
    [37] E. Demirok, D. Sera, R. Teodorescu, P. Rodriguez, and U. Borup, "Evaluation of the voltage support strategies for the low voltage grid connected PV generators," 2010 IEEE Energy Conversion Congress and Exposition, pp. 710-717, 2010.
    [38] 經濟部,「電業供電電壓及頻率標準」,民國106年。
    [39] 台灣電力股份有限公司,「電力系統運轉操作章則彙編」,民國一百零一年。
    [40] S. Mirjalili, "Genetic algorithm," Evolutionary algorithms and neural networks, pp. 43-55, 2019.
    [41] J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, vol. 5, pp. 4104-4108, 1997.
    [42] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE Computational Intelligence Magazine, vol. 1, pp. 28-39, 2006.
    [43] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95-international conference on neural networks, vol. 4, pp. 1942-1948, 1995.
    [44] 曾崧庭,「多重接地配電系統之三相諧波電力潮流分析及其被動式濾波器設計應用」,碩士論文,國立臺灣科技大學電機工程系, 民國一百零八年。
    [45] M. Reyes-Sierra and C. C. Coello, "Multi-objective particle swarm optimizers: A survey of the state-of-the-art," International Journal of Computational Intelligence Research, vol. 2, pp. 287-308, 2006.
    [46] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 256-279, 2004.
    [47] 吳武昌,「應用粒子群集與柏拉圖最佳化於配電系統饋線重構問題之研究」,博士論文,國立臺北科技大學機電科技研究所,民國一百年。
    [48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002.
    [49] M. Danish,「最小曼哈頓距離應用於多準則決策之被動式電力濾波器最佳化問題」,碩士論文,國立臺灣科技大學電機工程系,一百零九年。
    [50] W.-Y. Chiu, G. G. Yen, and T.-K. Juan, "Minimum Manhattan distance approach to multiple criteria decision making in multiobjective optimization problems," IEEE Transactions on Evolutionary Computation, vol. 20, pp. 972-985, 2016.
    [51] R. Azimi and S. Esmaeili, "Multiobjective daily Volt/VAr control in distribution systems with distributed generation using binary ant colony optimization," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 21, pp. 613-629, 2013.

    無法下載圖示 全文公開日期 2026/08/09 (校內網路)
    全文公開日期 2026/08/09 (校外網路)
    全文公開日期 2026/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE