簡易檢索 / 詳目顯示

研究生: 許峻瑋
Chun-Wei Hsu
論文名稱: 植基於拉丁超立方取樣與柏拉圖最適之WECC通用光伏系統模型控制參數調校
Control Parameter Tuning for WECC Generic Photovoltaic System Models using Latin Hypercube Sampling and Pareto Optimality
指導教授: 楊念哲
Nien-Che Yang
口試委員: 謝廷彥
Ting-Yen Hsieh
張建國
Chien-Kuo Chang
曾威智
Wei-Chih Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 59
中文關鍵詞: 逆變器發電設備柏拉圖前緣參數調校粒子群演算法光伏發電系統WECC通用模型
外文關鍵詞: Inverter-based generation, Pareto front, parameter tuning, particle swarm optimization, photovoltaic energy system, WECC generic model
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國際間對於環境保護的重視,各國的能源政策均朝向再生能源發展,其中,又以太陽能與風力發電為主。針對這一類型以逆變器為框架的設備,美國電力協調委員會(Western Electricity Coordinating Council, WECC)開發了通用模型做為分析實際設備響應的模擬架構。本文提出一種通用模型參數設計的流程,結合拉丁超立方取樣及柏拉圖最佳化,使模型的響應能有效的擬合實際逆變器設備的輸出。本文考量逆變器設備在不同的設計情境下,以擬合不同時間區段之動態特徵為目標,透過多目標粒子群演算法結合柏拉圖最佳化,在柏拉圖前緣解集合中,挑選出一組滿足不同的系統運轉條件,且同時匹配設備預期響應的控制器參數。本文將於測試系統及IEEE 39 bus上新增一處大型光伏發電設備,根據預期的設備響應,驗證本文提出之參數設計流程的有效性。


    With the increasing attention on worldwide ecological conservation, the energy policies of various countries are moving towards renewable energy systems, primarily with solar and wind as the main power sources. For the typical solar-wind generation system, the Western Electricity Coordinating Council (WECC) has developed a generic model as a simulation framework to analyze the response of the actual equipment. In this paper, we propose a parameter tuning process for the generic model controller that combines Latin hypercube sampling and Pareto optimization to enable the generic model to effectively match the output of the actual inverter device. Different operating scenarios are considered to match the dynamic characteristics of the inverter device by using the multi-objective particle swarm algorithm (MOPSO) along with the Pareto optimization. The effectiveness of the proposed parameter tuning process is verified on a user-defined test system and later on the IEEE 39 bus system with a large solar power facility.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究貢獻 3 1.4 論文架構 3 第二章 多目標最佳化 5 2.1 前言 5 2.2 拉丁超立方取樣 5 2.2.1 取樣特性比較 8 2.3 柏拉圖最佳化 10 2.4 MOPSO演算法 11 2.5 曼哈頓距離 13 第三章 控制參數調校方法 14 3.1 前言 14 3.2 測試系統 14 3.3 WECC通用模型 14 3.4 問題描述 17 3.4.1 控制變數 18 3.4.2 目標函數 18 3.4.3 等式限制 19 3.4.4 不等式限制 20 3.5 MOPSO於動態模型參數調整之應用 21 第四章 測試案例與結果 23 4.1 前言 23 4.2 設計情境說明 23 4.3 測試系統及參數設定 25 4.4 測試結果 27 4.4.1 演算法性能比較 29 4.4.2 初始化性能比較 32 第五章 應用 36 5.1 前言 36 5.2 測試結果 37 5.2.1 演算法性能比較 40 5.2.2 初始化性能比較 42 第六章 結論與未來研究方向 44 6.1 結論 44 6.2 未來研究方向 44 參考文獻 45

    [1] A. Qazi et al., "Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions," IEEE access, vol. 7, pp. 63837-63851, 2019.
    [2] F. Rizzi, N. J. van Eck, and M. J. R. E. Frey, "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, vol. 62, pp. 657-671, 2014.
    [3] H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, and A. J. A. T. E. Abdollahi, "The energy hub: An extensive survey on the state-of-the-art," Applied Thermal Engineering, vol. 161, p. 114071, 2019.
    [4] H. H. Chen, A. H. J. R. Lee, and S. E. Reviews, "Comprehensive overview of renewable energy development in Taiwan," Renewable Sustainable Energy Reviews, vol. 37, pp. 215-228, 2014.
    [5] M. S. Alam, F. S. Al-Ismail, A. Salem, and M. A. J. I. A. Abido, "High-level penetration of renewable energy sources into grid utility: Challenges and solutions," IEEE Access, vol. 8, pp. 190277-190299, 2020.
    [6] K. P. Kumar, B. J. R. Saravanan, and S. E. Reviews, "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids–a review," Renewable Sustainable Energy Reviews, vol. 71, pp. 348-358, 2017.
    [7] M. H. Athari and Z. Wang, "Modeling the uncertainties in renewable generation and smart grid loads for the study of the grid vulnerability," in 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5: IEEE, 2016.
    [8] M. Dreidy, H. Mokhlis, S. J. R. Mekhilef, and s. e. reviews, "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable sustainable energy reviews, vol. 69, pp. 144-155, 2017.
    [9] S. Yu, L. Zhang, H. H.-C. Lu, T. Fernando, and K. P. J. I. T. o. I. I. Wong, "A DSE-based power system frequency restoration strategy for PV-integrated power systems considering solar irradiance variations," IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2511-2518, 2017.
    [10] S. C. Johnson, D. J. Papageorgiou, D. S. Mallapragada, T. A. Deetjen, J. D. Rhodes, and M. E. J. E. Webber, "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, vol. 180, pp. 258-271, 2019.
    [11] A. Etxegarai, P. Eguia, E. Torres, A. Iturregi, V. J. R. Valverde, and S. E. Reviews, "Review of grid connection requirements for generation assets in weak power grids," Renewable Sustainable Energy Reviews, vol. 41, pp. 1501-1514, 2015.
    [12] G. Lammert, T. Heß, M. Schmidt, P. Schegner, and M. Braun, "Dynamic grid support in low voltage grids—fault ride-through and reactive power/voltage support during grid disturbances," in 2014 Power Systems Computation Conference, pp. 1-7: IEEE, 2014.
    [13] S. Zhu, D. Piper, D. Ramasubramanian, R. Quint, A. Isaacs, and R. Bauer, "Modeling inverter-based resources in stability studies," in 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5: IEEE, 2018.
    [14] V. Ćuk et al., "Considerations on the modeling of photovoltaic systems for grid impact studies," in 1st International Workshop on the Integration of Solar Power into Power Systems, 2011.
    [15] S. I. Nanou and S. A. J. E. P. S. R. Papathanassiou, "Modeling of a PV system with grid code compatibility," Electric Power Systems Research, vol. 116, pp. 301-310, 2014.
    [16] J. Mahseredjian, V. Dinavahi, and J. A. J. I. T. o. P. D. Martinez, "Simulation tools for electromagnetic transients in power systems: Overview and challenges," IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1657-1669, 2009.
    [17] A. Hariri and M. O. J. I. T. o. S. E. Faruque, "A hybrid simulation tool for the study of PV integration impacts on distribution networks," IEEE Transactions on Sustainable Energy, vol. 8, no. 2, pp. 648-657, 2016.
    [18] Generic Solar Photovoltaic System Dynamic Simulation Model Specification [Online]. Available: https://www.powerworld.com/files/WECC-Solar-PV-Dynamic-Model-Specification-September-2012.pdf
    [19] P. Sørensen, B. Andresen, J. Fortmann, and P. Pourbeik, "Modular structure of wind turbine models in IEC 61400-27-1," in 2013 IEEE Power & Energy Society General Meeting, pp. 1-5: IEEE, 2013.
    [20] Model User Guide for Generic Renewable Energy System Models [Online]. Available: https://www.epri.com/research/products/3002014083
    [21] Ö. Göksu, P. Sørensen, A. Morales, S. Weigel, J. Fortmann, and P. Pourbeik, "Compatibility of IEC 61400-27-1 and WECC 2nd generation wind turbine models," in Proceedings of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, pp. 15-17, 2016.
    [22] P. Eguia, A. Etxegarai, E. Torres, J. San Martin, and I. Albizu, "Modeling and validation of photovoltaic plants using generic dynamic models," in 2015 International Conference on Clean Electrical Power (ICCEP),pp. 78-84: IEEE, 2015.
    [23] P. Pourbeik, N. Etzel, and S. J. I. T. o. S. E. Wang, "Model validation of large wind power plants through field testing," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1212-1219, 2017.
    [24] R. Machlev, Z. Batushansky, S. Soni, V. Chadliev, J. Belikov, and Y. J. E. Levron, "Verification of utility-scale solar photovoltaic plant models for dynamic studies of transmission networks," Energies, vol. 13, no. 12, p. 3191, 2020.
    [25] G. Lammert, D. Premm, L. D. P. Ospina, J. C. Boemer, M. Braun, and T. J. I. T. o. E. C. Van Cutsem, "Control of photovoltaic systems for enhanced short-term voltage stability and recovery," IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 243-254, 2018.
    [26] B. Saleh et al., "Design of PID controller with grid connected hybrid renewable energy system using optimization algorithms," Journal of Electrical Engineering Technology, vol. 16, no. 6, pp. 3219-3233, 2021.
    [27] T. Fetouh, M. S. J. I. G. Zaky, Transmission, and Distribution, "New approach to design SVC-based stabiliser using genetic algorithm and rough set theory," IET Generation, Transmission Distribution, vol. 11, no. 2, pp. 372-382, 2017.
    [28] G. Shahgholian, A. J. I. G. Movahedi, Transmission, and Distribution, "Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system," IET Generation, Transmission Distribution, vol. 10, no. 8, pp. 1860-1868, 2016.
    [29] S. Soni, Solar PV plant model validation for grid integration studies. Arizona state university, 2014.
    [30] Y. Chi, Y. J. I. G. Xu, Transmission, and Distribution, "Multi-objective robust tuning of STATCOM controller parameters for stability enhancement of stochastic wind-penetrated power systems," IET Generation, Transmission Distribution, vol. 14, no. 21, pp. 4805-4814, 2020.
    [31] J. C. Helton, F. J. J. R. E. Davis, and S. Safety, "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems," Reliability Engineering, vol. 81, no. 1, pp. 23-69, 2003.
    [32] N. C. Yang and M. D. Le, "Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters set," Iet Generation Transmission & Distribution, vol. 9, no. 7, pp. 644-654, Apr 2015.
    [33] N. C. Yang and M. D. Le, "Optimal design of passive power filters based on multi-objective bat algorithm and pareto front," Applied Soft Computing, vol. 35, pp. 257-266, Oct 2015.
    [34] M. Reyes-Sierra and C. C. J. I. j. o. c. i. r. Coello, "Multi-objective particle swarm optimizers: A survey of the state-of-the-art," vol. 2, no. 3, pp. 287-308, 2006.
    [35] W.-Y. Chiu, G. G. Yen, and T.-K. J. I. T. o. E. C. Juan, "Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems," vol. 20, no. 6, pp. 972-985, 2016.
    [36] F. Jiménez-Buendía, R. Villena-Ruiz, A. Honrubia-Escribano, Á. Molina-García, and E. Gómez-Lázaro, "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," vol. 12, no. 19, p. 3749, 2019.

    無法下載圖示 全文公開日期 2027/08/11 (校內網路)
    全文公開日期 2027/08/11 (校外網路)
    全文公開日期 2027/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE