簡易檢索 / 詳目顯示

研究生: 翁國郡
Kuo-Chun Weng
論文名稱: 複合型熱整合組態於間接序列式反應蒸餾程序之設計與控制
Design and Control of Hybrid Heat Integrated Configuration for Indirect Reactive Distillation Process
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
錢義隆
I-Lung Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 146
中文關鍵詞: 反應蒸餾熱耦合複合型熱整合碳酸二苯酯控制
外文關鍵詞: Reactive Distillation, Thermally-Coupled, Hybrid Heat Integration, Diphenyl Carbonate, Control
相關次數: 點閱:354下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於化工產業中,蒸餾程序為最為耗能之分離程序。於2003年中東戰爭開始後,國際油價即不斷上漲,造成化工產業之成本不斷攀升。因此各種節能之熱整合方式如多效熱整合、熱耦合組態等因應而生。本研究嘗試結合多效熱整合及熱耦合組態之優點設計一新式複合型(Hybrid)熱整合組態,同時達到總能耗下降及能源再利用之目標。
研究上,以IIp理想反應蒸餾程序及具回流較真實之DPC反應蒸餾程序作為範例,進行複合型熱整合組態與其他傳統熱整合組態之節能效益比較。穩態設計以Aspen plus做為模擬工具,動態響應之研究則是利用Aspen plus dynamics來進行。
穩態模擬結果顯示,複合型熱整合組態於節能及減少操作成本方面皆有最傑出之表現,兩程序之複合型熱整合組態分別能節能50.4%及35%。複合型熱整合組態也可消除再混合效應,但與熱耦合組態相比其第二座蒸餾塔冷凝器浪費之能源較少。與多效熱整合相比複合型熱整合組態可減少兩塔間熱傳所需之熱傳面積。動態模擬結果顯示利用一壓力補償控制架構即可消除產能調整及組成擾動之影響。


In chemical industry, distillation process is famous on its high energy consumption. The price of crude oil continuously increases since 2003 A. C.. The energy-saving methods such as multi-effect configuration, thermally coupled configuration have been widely studied in open literatures. In this research, the design and control of a hybrid heat-integrated configuration through the combination of multi-effect and thermally coupled concepts has been studied in IIp type of reactive distillation (RD) process to improve energy efficiency and reduce overall energy requirement simultaneously.
The ideal IIp RD process and the diphenyl carbonate (DPC) RD process are used to demonstrate the steady state design advantage and dynamic performance of hybrid heat-integrated configuration. The steady state simulation result shows both of the cases can save the most energy and annul operating cost than other configurations. Energy saving percentages for both cases are 50.4 % and 35 %, respectively. The remixing effect still can be eliminated by hybrid heat-integrated configuration and the energy waste in condenser of second column is lower than thermally coupled configuration. The additional energy transfer area in the heat exchanger is also smaller than multi-effect configuration. The dynamic simulation result shows the products of both cases can be maintained in their specifications during the throughput and composition disturbance.

致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 8 1.3 研究動機與目的 16 1.4 組織章節 18 2. 熱力學及動力學模式 19 2.1 前言 19 2.2 熱力學模式 20 2.2.1 理想程序之熱力學模式 20 2.2.2 DPC反應蒸餾程序之熱力學模式 22 2.3 動力學模式 28 2.3.1 理想程序之動力學模式 28 2.3.2 DPC程序之動力學模式 29 3. 理想反應蒸餾程序 32 3.1 前言 32 3.2 理想反應蒸餾程序之熱整合設計 32 3.2.1 原始組態及熱耦合組態介紹 32 3.2.2 雙效熱整合組態 35 3.2.3 CF-HIDiC組態 38 3.2.4 複合型(Hybrid)熱整合組態 41 3.2.5 複合型熱整合組態之效益探討 46 3.3 動態控制及擾動測試 52 3.3.1 庫存控制環路設計 52 3.3.2 組成控制環路設計 53 3.3.3 壓力補償架構設計 61 3.3.4 與熱耦合組態之響應比較 71 4. DPC反應蒸餾程序 77 4.1 前言 77 4.2 DPC反應蒸餾程序之熱整合設計 77 4.2.1 程序原始組態及熱耦合組態 77 4.2.2 DPC反應蒸餾程序雙效熱整合組態 85 4.2.3 DPC反應蒸餾程序複合型熱整合組態 89 4.2.4 DPC程序複合型熱整合組態效益評估 94 4.3 複合型熱整合組態之動態模擬與控制 101 4.3.1 庫存控制環路設計 101 4.3.2 品質控制環路設計 105 4.3.3 壓力補償控制環路設計 119 4.3.4 與熱耦合設計之動態響應比較 129 5. 結論 136 附錄一 能源價格表 138 附錄二 控制器參數調諧方法 139 參考文獻 140

[中文]
[1] 李奕成,「熱整合反應蒸餾塔應用於乙酸甲酯水解系統」,國立臺灣大學化學工程研究所碩士論文 (2008)。
[2] 何瑞鴻,「理想系統之反應性分隔內壁蒸餾塔設計與節能研究」,國立臺灣大學化學工程研究所碩士論文 (2013)。
[3] 林禹德,「水解乙酸甲酯反應蒸餾系統之設計與控制」,國立臺灣大學化學工程研究所碩士論文 (2006)。
[4] 姚志通,「乙酸甲酯、碳酸二甲酯、乙酸苯酯、碳酸二苯酯雙成份混合物之相平衡與與蒸汽壓沸點之研究」,私立義守大學生物技術與化學工程研究所碩士論文(2012)。
[5] 徐婉鎔,「以滲透蒸發及萃取蒸餾分離碳酸二甲酯及甲醇共廢物之設計」,國立中原大學化學工程研究所碩士論文 (2013)。
[6] 鄭凱,「醋酸苯酯與碳酸二甲酯合成碳酸二苯酯之熱結合反應蒸餾系統的設計」,國立清華大學化學工程研究所碩士論文 (2011)。

[英文]
[7] Agreda, V. H. and Partin, L. R. (Reactive Distillation Process for the Production of Methyl Acetate). U.S. Patent 4435595, March 6, 1984.
[8] Al-Arfaj, M. A. and Luyben, W. L. Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column, Ind. Eng. Chem. Res., 39(9), 3298-3307, 2000.
[9] Al-Arfaj, M. A. and Luyben, W. L. Control Study of Ethyl Tert-Butyl Ether Reactive Distillation, Ind. Eng. Chem. Res., 41, 3784-3796, 2002.
[10] Alcántara-Avila, J. R.; Hasebe, S. and Kano, M. New Synthesis Procedure to Find the Optimal Distillation Sequence with Internal and External Heat Integrations, Ind. Eng. Chem. Res., 52, 4851-4862, 2013.
[11] Andrecovich, M. J. and Westerberg, A. W. A Simple Synthesis Method Based on Utility Bounding for Heat-Integrated Distillation Sequences, AIChE J., 31, 363-375, 1985.
[12] Annakou, O. and Mizsey, P. Rigorous Comparative Study of Energy-Integrated Distillation Schemes, Ind. Eng. Chem. Res., 35, 1877-1885, 1996.
[13] Barbosa, D. and Doherty, M. F. Simple Distillation of Homogeneous Reactive Mixtures, Chem. Eng. Sci., 43, 541-550, 1988.
[14] Chen, F.; Huss, R. S.; Malone M. F. and Doherty M. F. Simulation of Kinetic Effects in Reactive Distillation, Comput. Chem. Eng., 24, 2457-2472, 2000.
[15] Cheng, K.; Wang, S. J. and Wong, D. S. H. Steady-State Design of Thermally Coupled Reactive Distillation Process for the Synthesis of Diphenyl Carbonate, Comput. Chem. Eng., 52, 262-271, 2013.
[16] Ciric, A. R. and Miao, P. Z. Steady-State Multiplicities in an Ethylene-Glycol Reactive Distillation Column. Ind. Eng. Chem. Res., 33, 2738-2748, 1994.
[17] Doherty, M. F. and Buzad, G. Reactive Distillation by Design, Chem. Eng. Res. Des., 70, 448-458, 1992.
[18] Douglas, J. M. Conceptual Design of Chemical Processes, McGraw-Hill, NewYork, 1988.
[19] Emtir, M.;Rev, E. and Fonyo, Z. Rigorous Simulation of Energy Integrated and Thermally Coupled Distillation Schemes for Ternary Mixture, Appl. Therm. Eng., 21, 1299-1317, 2001.
[20] Glinos, K. A. and Malone, M. F. Optimality Regions for Complex Column Alternatives in Distillation Systems, Chem. Eng. Res. Des., 66, 229-240, 1988
[21] Guttinger, T. E. and Morari, M. Predicting Multiple Steady States in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems, Ind. Eng. Chem. Res., 38, 1633-1648, 1999.
[22] Guttinger, T. E. and Morari, M. Predicting Multiple Steady States in Equilibrium Reactive Distillation. 2. Analysis of Hybrid Systems, Ind. Eng. Chem. Res., 38, 1649-1665, 1999.
[23] Jacobs, R. and Krishna, R. Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis, Ind. Eng. Chem. Res., 32, 1706-1709, 1993.
[24] Kaibel, G. Distillation Columns with Vertical Partitions, Chem. Eng. Tech., 10, 92-98, 1987.
[25] Kataoka, K.; Noda, H.; Yamaji, H.; Mukaida, T. and Kaneda, M. A Compressor-Free HIDiC System for Recovery of Waste Solvent Mixtures. in Proceedings of the the 8th World Congress of Chemical Engineering, Aug., Montreal, Canada, 2009.
[26] Kaymak, D. B. and Luyben, W. L. Effect of the Chemical Equilibrium Constant on the Design of Reactive Distillation Columns. Ind. Eng. Chem. Res., 43, 3666-3671, 2004.
[27] Keyes, D. B. Esterrification Processes and Equipment. Ind. Eng. Chem. 24, 1096-1103, 1932.
[28] Lai, I. K.; Liu, Y. C.; Yu, C. C.; Lee, M. J. and Hung, H. P. Production of high-purity ethyl acetate using reactive distillation: Experimental and start-up procedure, Chem. Eng. Proc., 47, 1831-1843, 2008.
[29] Lee, H. Y.; Lee, Y. C.; Chien, I. L. and Huang, H. P. Design and Control of a Heat-Integrated Reactive Distillation System for the Hydrolysis of Methyl Acetate, Ind. Eng. Chem. Res., 49, 7398-7411, 2010.
[30] Lee, H. Y.; Lai, I. K., Huang, H. P. and Chien, I. L. Design and Control of Thermally Coupled Reactive Distillation for the Production of Isopropyl Acetate, Ind. Eng. Chem. Res., 51, 11753-11763, 2012.
[31] Lin, L. C. Effects of Relative Volatility Ranking to the Design of Reactive Distillation: Excess-Reactant Design, MS Thesis, National Taiwan University, Taipei, 2007.
[32] Ling, H. and Luyben, W. L. Temperature Control of the BTX Divided-Wall Column, Ind. Eng. Chem. Res., 48, 189-203, 2009.
[33] Ling, H. and Luyben, W. L. New Control Structure for Divided-Wall Columns, Ind. Eng. Chem. Res., 48, 6034-6049, 2009.
[34] Luyben, W. L.; Pszalgoeski, K. M.; Schaefer, M. R. and Siddons, C. Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate, Ind. Eng. Chem. Res., 43, 8014-8025, 2004.
[35] Luyben, W. L. Design and Control of a Fully Heat-Integrated Pressure-Swing Azeotropic Distillation System, Ind. Eng. Chem. Res., 47, 2681-2695, 2008.
[36] Malone, M. F. and Doherty, M. F. Reactive Distillation, Ind. Eng. Chem. Res., 39(11), 3953-3957, 2000.
[37] Mohl, K. D.;Kienle, A.;Gilles, E. D.;Rapmund, P.;Sundmacher, K. and Hoffmann, U. Steady-State Multiplicities in Reactive Distillation Columns for the Production of Fuel Ethers MTBE and TAME: Theoretical Analysis and Experimental Verification, Chem. Eng. Sci., 54, 1029-1043, 1999.
[38] Mueller, I. and Kenig, E. Y. Reactive Distillation in a Dividing Wall Column: Rate-Based Modeling and Simulation, Ind. Eng. Chem. Res., 46, 3709-3719, 2007.
[39] Robinson, C. S. and Gilliland, E. R. Element of Fractional Distillation, 4th ed., McGraw-Hill: New York, 1950.
[40] Sander, S.; Flisch, C.; Geissier, E.; SchoenmakerS, H.; Ryll, O. and Hasse, H. Methyl Acetate Hydrolysis in a Reactive Divided Wall Column, Chem. Eng. Res. Des., 85(A1), 149-154, 2007.
[41] Shen, R. C.; Fang, Y. J.; Xiao. W. D. and Zhu, K. H. Synthesis of Diphenyl Carbonate from Dimethyl Carbonate and Phenyl Acetate, Petrochem. Tech., 31, 897-900, 2002 (in Chinese).
[42] Sneesby, M. G.; Tade, M. O.; Datta, R. and Smith, T. N. ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects, Ind. Eng. Chem. Res., 36, 1855-1869, 1997.
[43] Sneesby, M. G.; Tade, M. O. and Smith, T. N. Two-point Control of a Reactive Distillation for Composition and Conversion, J. Proc. Cont., 9(1), 19-31, 1999.
[44] Tang, Y. T.; Huang, H. P. and Chien, I. L. Design of a Complete Ethyl Acetate Reactive Distillation System, J. Chem. Eng. Japan, 36, 1352-1363, 2003.
[45] Tang, Y. T.; Chen, Y. W.; Huang, H. P.; Yu, C. C.; Hung, S. B. and Lee, M. J. Design of Reactive Distillations for Acetic Acid Esterification, AIChE J., 51, 1683-1699, 2005.
[46] Tung, S. T. and Yu, C. C. Effects of Relative Volatility Ranking to the Design of Reactive Distillation, AIChE J., 53, 1278-1297, 2007.
[47] Wang, S. J. and Wong, D. S. H. Controllability and Energy Efficiency of a High-Purity Divided Wall Column, Chem. Eng. Sci., 62, 1010-1025, 2007
[48] Wang, S. J.; Lee, H. Y.; Ho, J. H.; Yu, C. C.; Huang, H. P. and Lee, M. J. Plantwide Design of Ideal Reactive Distillation Processes with Thermal Coupling, Ind. Eng. Chem. Res., 49, 3262-3274, 2010.
[49] Wang, S. J.; Yu; C. C. and Huang, H. P. Plant-Wide Design and Control of DMC Synthesis Process via Reactive Distillation and Thermally Coupled Extractive Distillation, Comput. Chem. Eng., 34, 361-373, 2010.
[50] Wang, S. J.; Huang, H. P. and Yu, C. C. Design and control of a Heat-Integrated Reactive Distillation Process to Produce Methanol and n-Butyl Acetate, Ind. Eng. Chem. Res., 50, 1321-1329, 2011.
[51] Wei, H. Y.; Rokhmah A.; Handogo R. and Chien, I. L. Design and Control of Reactive-Distillation Process for the Production of Diethyl Carbonate via Two Consecutive Trans-estirification Reaction, J. Proc. Cont., 21, 1193-1207, 2011.
[52] Wright, R. O. (Standard Oil Development Co., Elizabeth, NJ). U.S. Patent 2471134, May 24, 1949.
[53] Wu, Y. H.; Lee, H. Y.; Lee, C. H.; Huang H. P. and Chien, I. L. Design and Control of Thermally-Coupled Reactive Distillation System for Esterification of an Alcohol Mixture Containing n-Amyl Alcohol and n-Hexanol, Ind. Eng. Chem. Res., 52(48), 17184-17197, 2013.
[54] Yu, B.; Xu, Q. and Xu, C. Design and Control of Distillation System for Methylal/Methanol Seperation. Part 2: Pressure Swing Distillation with Fully Heat Integration, Ind. Eng. Chem. Res., 51, 1293-1310, 2012.

無法下載圖示 全文公開日期 2019/10/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE