簡易檢索 / 詳目顯示

研究生: 李耿亘
Ken-Hsuan Lee
論文名稱: 以氫化非晶矽薄膜層作為鍺晶異質接合鈍化層的研究
Surface Passivation of Germanium Wafers using Hydrogenated Amorphous Silicon Layers
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyan-kay Jou
陳敏璋
Miin-Jang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 異質接合表面鈍化
外文關鍵詞: Germanium hetero-junction, cleaning
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃以未來世代高效率矽晶太陽能電池的技術發展為議題,針對鍺晶製作可能的鍺晶異質接合,分別探討鍺晶表面的清洗以及利用氫化非晶矽薄膜層作為鈍化層的效應。

    我們發現以傳統矽晶RCA的清洗程序未能通用在鍺晶片上,因此重新建立清洗流程為下:首先將鍺晶片浸入丙酮跟酒精清洗表面有機物,後置入鹽酸和氫氟酸去除表面氧化物再以雙氧水浸泡數秒,最後仍需置入高真空腔體於450 ℃下退火得到洗淨的Ge(100) RHEED繞射點表面。

    將清洗好的鍺晶沉積雙面16 nm厚的a-Si:H薄膜鈍化晶片後得到最佳晶片有效載子生命週期達291.3 μs。以此最佳化的條件製作本質層於n+ a-Si:H/i a-Si:H/c-Ge/i a-Si:H/p+ a-Si:H結構上,發現10nm的a-Si:H薄膜得到較適的有效載子生命週期112.7 μs。


    In this paper, we studied several important issues concerning fabrication of crystalline germanium (Ge) hetero-junction using amorphous Si as the passivation layers. First of all, surface cleaning procedure of Ge wafers was established through a comparison with the conventional RCA cleaning procedure for Si wafers. An efficient way for surface cleaning of Ge included a series of organic solvents, HCl, and HF treatments with suitable concentrations. Then, a surface oxide layer was fabricated with intention through an immediate dipping in H2O2 solution after HF treatment. Finally a very clean Ge(100) was obtained, which was verified by RHEED, by removing the oxide layer using thermal annealing in a high vacuum chamber at temperatures ranging 450 ℃. After surface cleaning process, we use PECVD to grow 16 nm hydrogenated amorphous silicon (a-Si:H) for germanium surface passivation. The best minority carrier lifetime of the Ge wafer after a-Si:H double-side coated was 291.3 μs, which was further reduced to 112.7 μs after completion of n+ a-Si:H/i a-Si:H/c-Ge/i a-Si:H/p+ a-Si:H.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第一章 緒論 1 1.1前言 1 1.2非晶/單晶異質接合太陽能電池 3 1.3異質接合太陽能電池發電原理 6 1.4鍺晶異質接合太陽能電池 13 1.5研究動機與目的 17 第二章 實驗方法與步驟 19 2.1 實驗裝置 19 2.1.1 使用rf-PECVD系統成長本質層、p型及n型非晶矽薄膜 19 2.1.2 使用磁控濺鍍系統成長透明導電玻璃薄膜 24 2.2 實驗程序 26 2.2.1 鍺晶基材之清洗 26 2.2.2 鍺晶異質接合太陽能電池的製作程序 27 2.3 分析儀器 28 2.3.1反射式高能電子繞射 (reflection high energy electron diffraction, RHEED) 28 2.3.2橢圓偏光儀 (Ellipsometer) 30 2.3.3微波光電導衰減法少子壽命測試儀 (μ-PCD) 30 第三章 結果與討論 32 3.1鍺晶片表面的清洗 32 3.2本質氫化非晶矽(a-Si:H)薄膜製備 32 3.2.1不同反應壓力下電漿沉積本質氫化非晶矽薄膜層 28 3.2.2不同基材溫度下沉積本質氫化非晶矽薄膜層 43 3.2.3改變氫化非晶矽薄膜厚度對鍺晶片的有效載子生命週期之影響 46 3.3 本質氫化非晶矽薄膜應用於鍺晶異質接合結構 49 第四章 結論 54 第五章 參考文獻 55 作者簡介 59

    1. EPIA, Global Market Outlook for Photovoltaics until 2014, May (2012).
    2. EPIA, Global Market Outlook for Photovoltaics until 2016, May (2013).
    3. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, Prog. Photovolt: Res. Appl. 2014 ; 22:1-9
    4. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials & Solar Cells 93 (2009) 670–673
    5. E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, (2009) 1690
    6. D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. K., M. Taguchi, H. Sakata, E. Maruyama,” High-performance HIT solar cells for thinner silicon wafers”, Photovoltaic Specialists Conference (PVSC), June 2010, 003137 - 003140
    7. S. D. Wolf, A. Descoeudres, Z. C. Holman, C. Ballif,” High-efficiency Silicon Heterojunction Solar Cells: A Review”, Green, (2012) 7–24
    8. H. C. Neitzert, W. R. Fahrner,” History of the amorphous silicon on crystalline silicon heterojunction solar cell”, Rev. Roumaine Phys. 13, 317 (1968)
    9. M. Taguchi¬, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota,” HITM Cells-High-Effciency Crystalline Si Cells with Novel Structure”, Prog. Photovolt: Res. Appl.8 , 503-513 (2000)
    10. M. Tanaka, M. Taguchi, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano,”Development of New a-Si/c-Si Heterojunction Solar cell:ACJ-HIT”,Jpn. J. Appl. Phys. Vol. 31 (1992) pp. 3518-3522
    11. C. V. Sanchez,”Silicon heterojunction solar cells obtained by Hot-Wire CVD”, Ph.D. Thesis, University Politecnica de Catalunya (2008)
    12. T.H. Wang, M.R. Page, E. Iwaniczko, D.H. Levi, Y. Yan, H.M. Branz, Q. Wang,” Toward Better Understanding and Improved Performance of Silicon Heterojunction Solar Cells”,14th Workshop on Crystalline Silicon Solar Cells and Modules, Winter Park, Colorado (2004)
    13. L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt,” Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Solar Energy Materials & Solar Cells 93 (2009) 905–910
    14. http://www.solartr.org/SolarTR2_presentations%5CIvan%20Gordon.pdf
    15. http://www.helmholtz-berlin.de/forschung/oe/enma/si-pv/projekte/asicsi/afors-het/index_en.html
    16. J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans: Sol. Energy Mater. Sol. Cells 93 (2009) 1810.
    17. T. Kaneko and M. Kondo, Jpn. J. Appl. Phys., 50, 120204 (2013).
    18. J. C. Vickerman, “Surface Analysis—The Principle Techniques”, Wiley: New York, (1997) pp.60.
    19. Hongsingthong, Aswin, et al. , Jpn. J. Appl. Phys. Appl. 51.10 (2012).
    20. 林聖偉,甘烱耀,國立清華大學 (2010)
    21. D.L. Meier, M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, H.M. Branz, 17th NREL Crystalline Silicon Workshop (2007)
    22. K. Prabhakarana, T. Ogino, R. Hull, J.C. Bean, L.J. Peticolas, Surface Science Letters 316 pp.1031-1033 (1994)
    23. Jungyup Kim, Jim McVittie, Krishna Saraswart and Yoshio Nishi, 210th ECS Meeting, 15200.
    24. Alessandro Molle, Md. Nurul Kabir Bhuiyan, Grazia Tallarida, and Marco Fanciulli, Applied physics letters 89, 083504 (2006)
    25. K. Prabhakarana, T. Ogino, R. Hull, J.C. Bean, L.J. Peticolas, Surface Science Letters 316, 1031-1033 (1994)
    26. D. Schmeisser, R.D Schnell, A. Bogen, F.J. Himpsel, D. Rieger, G. Landgren and J.F Morar, Surface Science 172, 455-465 (1986)
    27. K. Prabhakaran, T. Ogino, Surface Science 325,263-271 (1995)
    28. M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba, H. Sakata, E. Maruyama, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 1690 (2009)
    29. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18 (2010).
    30. T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, S. Nakano, Conference Record of the 24th. IEEE Photovoltaic Energy Conversion, IEEE 1st World Conference on Photovoltaic Specialists Conference, Waikoloa, HI , 1219 (1994)
    31. D. Munoz, A. Ozanne, A. Danel, S. Harrison, N. Nguyen, C. Arnal, S.M. de Nicolas, F. Souche, G.D. Alonzo, T. Desrues, P.J. Ribeyron, 7th Workshop on the Future Direction of Photovoltage, (2010).
    32. D. Lachenal, Y. Andrault, D. Batzner, C. Guerin, M. Kobas, B. Mendes, B. Strahm, M. Tesfai, G. Wahli, A. Buechel, A. Descoeudres, G. Choong, R. Bartlome, L. Barraud, F. Zicarelli, P. Bole, L. Fesquet, J. Damon-Lacoste, S. De Wolf, C. Ballif, 25th European Photovoltaic Solar Energy Conference and Exhibition /5th World Conference on Photovoltaic Energy Conversion,Valencia, Spain, 1272 (2010).
    33. M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, H.M. Branz, T.H. Wang, Conference Record of the IEEE 4th World Conference on 176 Photovoltaic Energy Conversion, Waikoloa, HI, 1485 (2006)
    34. L. Fesquet, S. Olibet, E. Vallat-Sauvain, A. Shah, C. Ballif., 22nd European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany,1678 (2007).
    35. U.K. Das, M.Z. Burrows, M. Lu, S. Bowden, R.W. Birkmire, Appl. Phys. Lett. 92, 603504 (2008)
    36. Shinya Nakano, Yoshiaki Takeuchi, Tetsuya Kaneko, Michio Kondo, Journal on Non-Crystalline Solids 358 pp.2249-2252(2012)
    37. Tetsuya Kaneko and Michio Kondo, Japanese Journal of Applied Physics 50 (2011)
    38. M. Moreno, M. Labrune, P. Roca I Cabarrocas, Sol. Energy Mater. Sol. Cells 93, 905 (2009)
    39. H. Fujiwara, T. Kaneko, M. Kondo, Optimization of interface structures in crystalline silicon heterojunction solar cells, Solar Energy Materials & Solar Cells 93 (2009) 725–728.

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 2024/08/05 (校外網路)
    全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE