簡易檢索 / 詳目顯示

研究生: 陳泓易
Hung-Yi Chen
論文名稱: 再繞射式光柵干涉儀用於多自由度位移及角度量測之開發
Development of a Recurring-diffraction grating interferometer for Measuring Multi-Degree-of-Freedom Displacements and Rotations
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
謝宏麟
Hung-Lin Hsieh
鄧昭瑞
Geo-Ry Tang
許正治
Cheng-Chih Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 外差干涉術光柵干涉儀再繞射共面偵測技術五自由度高解析度
外文關鍵詞: Heterodyne interferometry, Grating Interferometer, Recurring Diffraction, Coplanar Detection Technique, Five degrees-of-freedom, High Resolution
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套創新的多自由度再繞射式光柵干涉儀,用以同時量測五維度位移及旋轉角度變化量。此套系統是以光柵為技術核心進行開發,同時整合外差干涉術、光柵干涉術、再繞射光路及共面偵測技術等設計之優勢,使系統具備高解析度、高穩定度及五自由度的量測能力。
    此套再繞射式光柵干涉儀是透過「再繞射」的光路設計,使雷射光束產生兩次的繞射效應,進而引入加倍的相位變化量,有效的提升光柵干涉儀的系統解析度,此外,一般光柵干涉儀需要於各軸向增加偵測架構,亦或是選用二維光柵等方式達成多維度的量測;而此套創新的再繞射式光柵干涉儀透過光路設計及共面偵測技術的配合,在不改變光學架構下,加入側向位移分光器及光感測器兩種光學元件,方能於光柵上形成三個偵測點,使系統在少量光學元件下具備五自由度(x, z, θx, θy, θz)的精密量測能力,具備不離焦偵測及高光使用率等優勢,成功突破目前多自由度光柵干涉儀所面臨的瓶頸。
    為了驗證本研究所提出之多自由度再繞射式光柵干涉儀的可行性及其系統性能,我們進行了一系列的驗證實驗,並將本研究所開發的光柵干涉儀實驗結果與平台內建的電容式位移計及線性光學尺所量測到的結果相比較。由實驗結果證明,此套再繞射式光柵干涉儀僅需一個待測光柵,即可同時提供五自由度位移及旋轉角的量測訊息,其實際位移與旋轉角度的解析度分別約為3 nm與100 nrad,重複性分別優於0.62 nm及63 nrad,量測速度極限可達160 μm/s,具備優異的量測性能,可廣泛應用於精密量測、工具機業及自動化光學檢測等場合中。


    In this study, a recurring-diffraction grating interferometer for multi-degree-of-freedom measurement is proposed. The recurring-diffraction type grating interferometer is developed by combining the advantages of heterodyne interferometry, grating interferometry, recurring diffraction optical configuration, as well as the coplanar detection technique. It has the capability of measuring in five degrees-of-freedom (DOF) with high resolution and stability.
    The proposed system takes advantage of a “recurring-diffraction” optical configuration, which directs diffracted light to pass through a grating twice without additional optical components, thereby doubling the phase change induced by grating displacement, effectively improving the resolution of the grating interferometer. In addition, the generally grating interferometer needs to increase the detection structures in each axial, or select a two-dimensional grating to achieve multi-dimensional measurement. Furthermore, the
    This innovative recurring-diffraction interferometer through the incorporation of two optical
    component. Three detection points are formed on the system, so that the system has the precision measurement capability of five degrees of freedom (x, z, θx, θy, θz) with few optical components, and has the advantages of no defocus detection and high light utilization rate, and successfully overcome the problem of grating interferomter multi degree of freedom in nowadays.
    In order to verify the feasibility and performance of the proposed recurring-diffraction grating interferometer, a series of experiments were conducted, with the measurement results obtained from the proposed system compared with the built-in capacitive sensor and linear encoder of commercial positioning stages. As displayed in the results, the proposed recurring-diffraction grating interferometer has the ability to perform precision displacement and rotation measurement in five DOFs simultaneously without needing to change the optical configuration with resolutions for displacement and rotation measurement of 3 nm and 100 nrad, and the repeatability better than 0.62 nm and 63 nrad, respectively. The maximum velocity for displacement measurement can reach 160 μm/s. The proposed grating interferometer has excellent measurement properties, and is well-suited for applications within precision manufacturing, tool machine industry, automatic optical measurement, nanotechnology, semi-conductor technology and other related fields.

    摘要 I Abstract II 致謝 IV 符號說明 V 目錄 IX 圖目錄 XII 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 外差光學干涉術之文獻回顧 3 1.2.2 光柵干涉術之文獻回顧 8 1.2.2.1 單自由度光柵干涉儀 8 1.2.2.2 多自由度光柵干涉儀 11 1.2.2.3 再繞射技術之文獻回顧 14 1.2.3 共面技術之文獻回顧 17 1.3 研究目的 25 1.4 論文架構 25 第二章 基礎理論 27 2.1 外差光學干涉術 27 2.1.1 移動(旋轉)光柵法 28 2.1.2 旋轉波片法 29 2.1.3 波長調制技術 31 2.1.4 聲光調制技術 32 2.1.5 電光調制技術 34 2.1.6 電光調制式外差麥克森干涉儀 36 2.2 光柵干涉術(雷射光學尺) 38 2.2.1 都卜勒效應 38 2.2.2 再繞射技術 40 2.2.3 外差式光柵干涉儀 41 2.3 共面式外差干涉儀 43 2.4 小結 45 第三章 多自由度再繞射式光柵干涉儀 47 3.1 雙自由度再繞射式光柵干涉儀 47 3.2 四自由度再繞射式光柵干涉儀 52 3.3 五自由度再繞射式光柵干涉儀 56 3.4 相位解調系統 59 3.5 小結 60 第四章 實驗結果與討論 61 4.1 線性位移(x, z)量測實驗 61 4.2 線性旋轉角(θx, θz)量測實驗 64 4.3 五自由度位移及旋轉角(x, z, θx, θy, θz)量測實驗 67 4.3.1 大行程位移與旋轉角度量測實驗(x, z, θx, θy, θz) 68 4.3.2 中行程位移與旋轉角度量測實驗(x, z, θx, θy, θz) 69 4.3.3 小行程位移與旋轉角度量測實驗(x, z, θx, θy, θz) 71 4.3.4 重複性量測實驗 72 4.4 量測系統性能、極限測試與討論 74 4.4.1 解析度量測 75 4.4.2 量測速度極限測試 76 4.4.3 系統穩定度測試 78 4.4.4 隨機波運動量測實驗 79 4.5 系統所用到之實驗儀器及光學元件 81 4.6 小結 82 第五章 誤差分析 83 5.1 系統誤差 83 5.1.1 光源方位角偏差所造成之影響 84 5.1.2 四分之一波片(QWP)方位角偏差所造成之影響 86 5.1.3 偏極化分光鏡消光比所造成之影響 87 5.1.4 電光調變器(EOM)對位誤差所引入之相位誤差 88 5.1.5 光柵對位誤差於位移量測系統中造成之影響 89 5.2 隨機誤差 91 5.2.1 外界環境振動 91 5.2.2 材料熱膨脹係數造成的影響 91 5.3 小結 92 第六章 結論與討論 93 6.1 結論 93 6.2 未來展望 94 參考文獻 95

    [1] A. A. Michelson and E. W. Morley, "On the Relative Motion of the Earth and of the Luminiferous Ether," Sidereal Messenger, vol. 6, pp. 306-310, vol. 6, pp. 306-310, 1887.
    [2] J. Bahrmann et al., "Frequency shifting of laser radiation by a moving grating," Optics Communications, vol. 22, no. 3, pp. 365-368, 1977.
    [3] W. H. Stevenson, "Optical frequency shifting by means of a rotating diffraction grating," Applied Optics, vol. 9, no. 3, pp. 649-652, 1970.
    [4] M. P. Kothiyal and C. Delisle, "Optical frequency shifter for heterodyne interferometry using counterrotating wave plates," Optics letters, vol. 9, no. 8, pp. 319-321, 1984.
    [5] S. T. Lin and W. J. Syu, "Heterodyne angular interferometer using a square prism," Optics and Lasers in Engineering, vol. 47, no. 1, pp. 80-83, 2009.
    [6] J.-Y. Lee et al., "Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry," Applied optics, vol. 51, no. 8, pp. 1095-1100, 2012.
    [7] X. Wan et al., "Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing," Optics letters, vol. 32, no. 4, pp. 367-369, 2007.
    [8] D.-C. Su et al., "Simple two-frequency laser," Precision engineering, vol. 18, no. 2-3, pp. 161-163, 1996.
    [9] D.-C. Su et al., "A heterodyne interferometer using an electro-optic modulator for measuring small displacements," JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, vol. 27, no. 1, pp. 19-23, 1996.
    [10] K. Thurner et al., "Fabry-Perot interferometry for long range displacement sensing," Rev Sci Instrum, vol. 84, no. 9, p. 095005, Sep 2013.
    [11] D. T. Smith et al., "A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement," Rev Sci Instrum, vol. 80, no. 3, p. 035105, Mar 2009.
    [12] K.-N. Joo et al., "High resolution heterodyne interferometer without detectable periodic nonlinearity," Optics express, vol. 18, no. 2, pp. 1159-1165, 2010.
    [13] O. Sasaki et al., "Double sinusoidal phase-modulating laser diode interferometer for distance measurement," Applied optics, vol. 30, no. 25, pp. 3617-3621, 1991.
    [14] S. Zhao et al., "Laser heterodyne interferometer for the simultaneous measurement of displacement and angle using a single reference retroreflector," Optical Engineering, vol. 54, no. 8, 2015.
    [15] I. Yamaguchi and N. Nakatani, "Heterodyne interferometers using orthogonally polarized and two-frequency shifted light sources with superhigh extinction ratio," presented at the Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 1999.
    [16] P. Sandoz et al., "Phase-shifting methods for interferometers using laser-diode frequency-modulation," Optics communications, vol. 132, no. 3-4, pp. 227-231, 1996.
    [17] H. Kikuta et al., "Distance measurement by the wavelength shift of laser diode light," Applied optics, vol. 25, no. 17, pp. 2976-2980, 1986.
    [18] C. Joenathan et al., "Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and increased sensitivity," Optical Engineering, vol. 55, no. 2, 2016.
    [19] F. Cheng and K.-C. Fan, "High-resolution Angle Measurement based on Michelson Interferometry," Physics Procedia, vol. 19, pp. 3-8, 2011.
    [20] E. A. Lavrov et al., "Development of Methods Precision Length Measurement Using Transported Laser Interferometer," Physics Procedia, vol. 72, pp. 222-226, 2015.
    [21] C.-F. Kao et al., "Diffractive Laser Encoder with a Grating in Littrow Configuration," Japanese Journal of Applied Physics, vol. 47, no. 3, pp. 1833-1837, 2008.
    [22] J. Guan et al., "A differential interferometric heterodyne encoder with 30 picometer periodic nonlinearity and sub-nanometer stability," Precision Engineering, vol. 50, pp. 114-118, 2017.
    [23] J.-Y. Lee and M.-P. Lu, "Optical heterodyne grating shearing interferometry for long-range positioning applications," Optics Communications, vol. 284, no. 3, pp. 857-862, 2011.
    [24] G. Wang et al., "Two-dimensional diagonal-based heterodyne grating interferometer with enhanced signal-to-noise ratio and optical subdivision," Optical Engineering, vol. 57, no. 06, 2018.
    [25] 廖家賢,「六自由度聚焦式雷射光學尺」,碩士學位論文,機械工程,國立台灣科技大學,台北,2018。
    [26] C.-H. Liu and C.-H. Cheng, "Development of a grating based multi-degree-of-freedom laser linear encoder using diffracted light," Sensors and Actuators A: Physical, vol. 181, pp. 87-93, 2012.
    [27] X. Li et al., "A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage," Precision Engineering, vol. 37, no. 3, pp. 771-781, 2013.
    [28] J. Y. Lee and G. A. Jiang, "Displacement measurement using a wavelength-phase-shifting grating interferometer," Opt Express, vol. 21, no. 21, pp. 25553-64, Oct 21 2013.
    [29] X. Xing et al., "Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors," Opt Express, vol. 25, no. 25, pp. 31384-31393, Dec 11 2017.
    [30] C.-C. Wu et al., "Littrow-type self-aligned laser encoder with high tolerance using double diffractions," Optics Communications, vol. 297, pp. 89-97, 2013.
    [31] D. Chang et al., "Double-Diffracted Spatially Separated Heterodyne Grating Interferometer and Analysis on its Alignment Tolerance," Applied Sciences, vol. 9, no. 2, 2019.
    [32] C. L. Cunbao Lin et al., "Symmetrical short-period and high signal-to-noise ratio heterodyne grating interferometer," Chinese Optics Letters, vol. 13, no. 10, pp. 100501-100505, 2015.
    [33] Q. Lv et al., "Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement," Appl Opt, vol. 57, no. 31, pp. 9455-9463, Nov 1 2018.
    [34] Y. Lu et al., "Two-degree-freedom displacement measurement based on a short period grating in symmetric Littrow configuration," Optics Communications, vol. 380, pp. 382-386, 2016.
    [35] Y. Sheng et al., "Grating interferometry with high optical subdivision," presented at the Holography, Diffractive Optics, and Applications VIII, 2018.
    [36] Y. Shimizu et al., "Uncertainty analysis of a six-degree-of-freedom surface encoder for a planar motion stage," Procedia CIRP, vol. 75, pp. 355-360, 2018.
    [37] J. Tan et al., "A diffraction grating scale for long range and nanometer resolution," presented at the Fifth International Symposium on Instrumentation Science and Technology, 2008.
    [38] W. Ye et al., "Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner," Opt Express, vol. 26, no. 26, pp. 34734-34752, Dec 24 2018.
    [39] W. Xia et al., "Sinusoidal phase-modulating self-mixing interferometer with nanometer resolution and improved measurement velocity range," Appl Opt, vol. 54, no. 26, pp. 7820-7, Sep 10 2015.
    [40] 吳鈞珽,「六自由度外差式散斑干涉儀之開發」,碩士學位論文,機械工程,國立台灣科技大學,台北,2017。

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE