簡易檢索 / 詳目顯示

研究生: 張義國
YI-KUO CHANG
論文名稱: 金擔載二氧化鈦及其在紫外/可見光下光催化活性之研究
Study on of Gold-loaded Titania and Its Photocatalytic Activity under UV/Visible Irradiation
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧 洋
Young Ku
戴 龑
Yian Tai
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 二氧化鈦光催化活性表面電漿共振
外文關鍵詞: Titania, Gold, Photocatalytic activity, Surface plasmon resonance
相關次數: 點閱:301下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是以含浸法(Impregnation)與光沉積法(Photodeposition)二種方式將金沉積在二氧化鈦光觸媒表面,利用金奈米粒子本身之特性及可以補捉二氧化鈦被光激發電子的能力,有效減少電子電洞再結合速率,達成以簡易方式製備-高活性的光觸媒之目的。探討不同金含量、金粒徑、二氧化鈦粒徑及製備方式對於二氧化鈦光催化效率之影響,進一步研究金的表面電漿共振(surface plasmon resonance,SPR)現象與光催化效率之關連性。
研究工作分為物性分析與光催化效率測試兩部分,物性分析以穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、反射式紫外-可見光光譜儀(UV-VIS-DRS)、X-ray光電子能譜儀(XPS)、感應耦合電漿原子放射光譜儀(ICP-AES)、螢光光譜儀(PL)等儀器為主,而光催化效率測試則是在(a)單光源照射(UV-A)(b)雙光源照射(UV-A+GLED)下光催化降解甲基橙水溶液。PL結果顯示當二氧化鈦經由金改質後,金能有效補捉二氧化鈦照光後所躍遷到傳導帶的電子,而有效減少電子電洞再結合速率,進而增加二氧化鈦的光催化效率。UV-VIS-DRS結果顯示,Au-TiO2在波長530 ~ 570 nm左右會出現由金的表面電漿共振現象所引起之吸收峰,其峰強度大致上正比於金含量。於光催化效率測試可發現,當Au-TiO2照到綠光(GLED)會激發金產生表面電漿共振,而伴隨而來的強「電場」對於二氧化鈦於UV-A光下所激發之電子電洞對的生成量有所助益,而可以增進光催化反應活性,而SPR的行為受二氧化鈦的粒徑、性質、表面金粒子顆粒尺寸與數量影響,進而對於光催化活性有不同影響,實驗結果可知藉由改變參數以調整SPR之位置符合綠光激發光源範圍時,並增強SPR吸收強度,可以有效地增加Au-TiO2在雙光源系統下的光催化活性。


In this study, the gold-loaded titanium dioxide was prepared by photodeposition and impregnation methods for the better activity. The gold nanoparticles can capture the photoexcited electron of titanium dioxide to reduce the recombination rate of electron and hole.
In this research, the effects of content of gold, particle size of gold, particle size of titanium dioxide, and preparation methods on surface plasmon resonance (SPR) phenomenon and the photocatalytic efficiency are investigated in detail. The transmission electron microscopy (TEM) , X-ray diffraction (XRD), UV-Visible-diffuse reflectance spectra (UV-VIS-DRS), X-ray photoelectron spectra (XPS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and photoluminescence (PL) spectroscopy were applied to observe the morphology, crystal structure, light absorption, surface composition, gold content, and emission from the recombination of photoexcited electron and hole, respectively. The photocatalytic activity was evaluated by the decolorisation of methyl orange solution over the modified titania under illuminations of UV-A and UV-A/GLED.
The PL intensity decrease greatly with the presence of Au on TiO2 due to the electrons will be trapped by gold nanoparticles, resulting in the improvement of photocatalytic activity. The Au-TiO2 will have an absorption peak (530-570 nm) due to the surface plasma resonance effect. The SPR absorption increases with the increase of gold content. The results of photocatalytic experiments indicate the UV-photocatalytic reaction rate will be enhanced by using the illumination of green light simultaneously. The strong electric field, resulting from the surface plasma resonance excitation, is generated as Au-TiO2 is irradiated by green light. It then improves the generation rate of photoexcited electron and hole of titanium dioxide under UV irradiation. Therefore, the photoactivity of Au-TiO2 in the double beam system (UV/GLED) is better than that in single beam system (UV). The SPR phenomenon is affected by particle size of gold and TiO2, amount of gold, and coherence properties between TiO2 and Au. The experiment results show that synergistic effect between UV and green light for the improvement of photoactivity will be increased by increasing the SPR-absorption of Au-TiO2 and adjusting the wavelength of SPR to the green-light region.

摘要………………………………………………………………………..I Abstract …………………………………………………………………...II 目錄……………………………………………………………………...IV 圖目錄…………………………………………………………………..VII 表目錄…………………………………………………………………….X 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 1 第二章 文獻回顧 3 2.1 光觸媒簡介 3 2.1.1光觸媒簡介 3 2.1.2二氧化鈦簡介 6 2.2 光催化理論 9 2.2.1光催化反應 9 2.2.2光催化原理 12 2.3 影響光催化效率的因素 14 2.3.1光觸媒材料自身的因素 14 2.3.1.1能隙 14 2.3.1.2能帶位置 15 2.3.1.3界面間性質 17 2.3.1.4量子效應 18 2.3.1.5其它自身因素 19 2.3.2外在環境的影響 20 2.3.2.1反應動力學 20 2.3.2.2電子電洞的捕捉效應 22 2.3.2.3 pH值 22 2.3.2.4照射光源 23 2.4 光觸媒之改質 24 2.4.1添加貴重金屬 24 2.4.2添加過渡金屬 24 2.4.3其它添加物質 25 2.4.4複合半導體光觸媒 26 2.4.5表面敏化 27 2.5 助觸媒-金之簡介 28 2.5.1金觸媒的特性 28 2.5.2金奈米粒子覆載於二氧化鈦的合成方法 29 2.6 金改質二氧化鈦之文獻回顧 31 第三章 研究方法 36 3.1 藥品與儀器設備 37 3.1.1實驗藥品 37 3.1.2實驗儀器及設備 38 3.2 光觸媒之製備 39 3.2.1含浸法(Impregnation) 40 3.2.2光沉積法(Photodeposition) 41 3.3 物性分析 42 3.3.1 X-ray繞射分析 42 3.3.2紫外光-可見光光譜儀(UV-Vis spectrophotometer) 43 3.3.3穿透式電子顯微鏡(TEM) 43 3.3.4 X-光電子能譜儀(XPS) 43 3.3.5螢光光譜儀(PL) 44 3.3.6感應耦合電漿原子放射光譜儀(ICP-AES) 44 3.3.7熱分析儀(TGA/DSC) 44 3.4 光催化效率之測試 45 第四章 結果與討論 47 4.1 奈米金粒子與二氧化鈦粉體製備複合性Au-TiO2光觸媒之探討 47 4.1.1金含量之效應 47 4.1.1.1物性分析 47 4.1.1.2光催化效率測試 52 4.1.2金粒徑之效應 54 4.1.2.1物性分析 54 4.1.2.2光催化效率測試 59 4.1.3二氧化鈦粒徑之效應 61 4.1.3.1物性分析 61 4.1.3.2光催化效率測試 66 4.2 含浸法與光沉積法製備複合性Au-TiO2光觸媒之探討 68 4.2.1含浸法:不同金含量 68 4.2.1.1物性分析 68 4.2.1.2光催化效率測試 75 4.2.2光沉積法:不同金含量 77 4.2.2.1物性分析 77 4.2.2.2光催化效率測試 83 4.2.3煅燒溫度:光沉積法 84 4.2.3.1物性分析 84 4.2.3.2光催化效率測試 91 第五章 結論與未來展望 94 5.1 結論 94 5.2 未來展望 96 第六章文獻回顧 97

[1] Rajehwar, K. and de Tacconi, N. R., “Semiconductor-based composite materials: Preparation, properties, and performance,” Chemistry of Materials 13, 2765-2782 (2001)
[2] Bond, G.C., Thompson, D.T., “Catalysis by Gold ,” Catalysis Reviews - Science and Engineering 41, 319-388 (1999)
[3] Valden, M., Pak, S., Lai, X., Goodman, D.W., “Structure sensitivity of CO oxidation over model Au/TiO2 catalysts,” Catalysis Letters 56, 7-10 (1998)
[4] Serpone, N., Marutamuthu, P., Pichat, P., Perlizzetti, E., and Hidaka, H. “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chloroenol and pentachlorophenol: chemical evidence for election and hole transfer between coupled semiconductors,” Journal of Photochemistry and Photobiology A: Chemistry 85, 247-255 (1995)
[5] 呂宗昕,圖解奈米科技與光觸媒,商周出版社,第169頁(2003)
[6] Linsebigler, A.L., Lu, G., Yates Jr., J.T., “Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results,” Chemical Reviews 95, 735-758 (1995)
[7] Kudo, A., Miseki, Y., “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews 38, 253-278 (2009)
[8] 高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,五南圖書出版公司,32-135頁 (2004)
[9] Anonymous in phase diagrams for ceramists figure, The American Ceramic Society 76, 4150 (1975)
[10] 藤嶋昭,橋本和仁,渡部俊也,吳紀聖,圖解光觸媒,世茂出版有限公司,74-124頁 (2006)
[11] Sclafani, A., Herrmann, J.M., “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions ,” Journal of Physical Chemistry 100 , 13655-13661 (1996)
[12] Ramamurthy, V., “Photochemistry in organized and constrained media,” VCH: New York (1991)
[13] Gust, D., Moore, T. A., “Mimicking photosynthesis,” Science 244, 35-41 (1989)
[14] Lewis, N. S., “An analysis of charge transfer rate constants for semiconductor/liquid interfaces ,” Annual Review of Physical Chemistry 42, 543-580 (1991)
[15] Schiavello, M., Sclafani, A. ,“Thermodynamic and kinetic aspects in photocatalysis”, in Photocatalysis Fundamental and Applications, edited by Serpone, N.; Pelizztti, E. John Wiley & Sons, New Yark (1989)
[16] Li, W., Wang, Y., Lin, H., Shah S. I., Huang, C. P., Doren, D. J., Rykov, S. A., Chen, J. G., Barteau, M. A., “Band Gap Tailoring of Nd3+-Doped TiO2 Nanoparticles,” Applied Physic Letters 83, 4143-4145 (2003)
[17] 謝秉勳,「奈米級光觸媒之製備及光催化活性測定」,碩士論文,國立臺灣大學,台北 (2001)
[18] Iliev, V., Tomova, D., Bilyarska, L., Tyuliev, G., “Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid ,” Journal of Molecular Catalysis A: Chemical 263 , 32–38 (2007)
[19] Jakob, M., Levanon, H., Kamat, P.V., “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Letters 3, 353-358 (2003)
[20] Kiyonaga, T., Fujii, M., Akita, T., Kobayashi, H., Tada, H., “Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(IV) dioxide at photostationary state,” Physical Chemistry Chemical Physics 10, 6553-6561( 2008)
[21] Tada, H., Ishida, T., Takao, A., Ito, S., “Drastic Enhancement of TiO2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters,” Langmuir 20, 7898-7900 (2004)
[22] Tada, H., Kiyonaga, T., Naya, S.-I., “Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(iv) dioxide ,” Chemical Society Reviews 38, 1849-1858 (2009)
[23] Hidalgo, M.C., Maicu, M., Navío, J.A., Colón, G., “Effect of Sulfate Pretreatment on Gold-Modified TiO2 for Photocatalytic Applications,” Journal of Physical Chemistry C 113, 12840-12847 (2009)
[24] Dhananjeyan, M.R., Annapoorani, R., Renganathan, R., “A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil ,” Journal of Photochemistry and Photobiology A: Chemistry 109 , 147-153 (1997)
[25] Davis, R. J., J. L. Gainer, G. O'Neal, and I. W. Wu, “Photocatalytic ecolorization of Wastewater Dyes,” Water Environment Research. 66, 50-53 (1994)
[26] Bacsa, R. and M. Gratzel, “Rutile formation in hydrothermally crystallized nanosized titania ,” Journal of the American Ceramic Society 79 (8), 2185-2188 (1996)
[27] Zhang, Q., Gao, L., Guo, J., “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis ,” Applied Catalysis B: Environmental 26, 207–215 (2000)
[28] Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., Watanabe, T., “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” Journal of the American Chemical Society 130, 1676-1680 (2008)
[29] 吳政峰,「溫度和濕度效應對光催化分解氣相揮發性有機物之影響」碩士論文,國立中山大學,高雄 (2004)
[30] Sauer, M.L., Hale, M.A., Ollis, D.F., “Heterogenous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air ,” Journal of Photochemistry and Photobiology, A: Chemistry 88, 169-178 (1995)
[31] Sabate, J., Anderson, M.A., Kikkawa, H., Edwards, M., Hill Jr., C.G., “A kinetic study of the photocatalytic degradation of 3-chlorosalicylic acid over TiO2 membranes supported on glass ,” Journal of Catalysis 127, 167-177 (1991)
[32] Grzechulska, J., Morawski, A.W., “Photocatalytic decomposition of azo-dry acid black 1 in water over modified titaniumdioxide,” Applied Catalysis B: Environmental 36, 45-51 (2002)
[33] Ohko, Y., Hashimoto, K., Fujishima, A., “Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films,” Journal of Physical Chemistry A 101, 8057-8062 (1997)
[34] Naya, S.-I., Teranishi, M., Isobe, T., Tada, H., “Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(iv) dioxide ,” Chemical Communications 46, 815-817 (2010)
[35] Mizukoshi, Y., Makise, Y., Shuto, T., Hu, J., Tominaga A., Shironita, S.,Tanabe, S., “Immobilization of Noble Metal Nanoparticles on the Surface of TiO2 by the Sonochemical Method: Photocatalytic Production of Hydrogen from an Aqueous Solution of Ethanol,” Ultrasonics Sonochemistry 14, 387-392 (2007)
[36] Anpo M., “Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale ,” Studies in surface Science and Catalysis 130, 157-167 (2000)
[37] Pan, C. C. Wu, J. C. S., “Visible-light Response Cr-doped TiO2 Nano Photocatalysts,” Journal of Chinese Colloid and Interface Society 26, 175-182 (2004).
[38] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides ,” Science 293, 269-271 (2001)
[39] Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light ,” Applied Catalysis A: General 265, 115-121 (2004)
[40] Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors ,” Journal of Photochemistry and Photobiology A: Chemistry 85, 247-255 (1995)
[41] Cho, Y., Choi, W., Lee, C.-H., Hyeon, T., Lee, H.-I., “Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2,” Environmental Science and Technology, 35, 966-970 (2001)
[42] Lobedank, J., Bellmann, E., Bendig, J., “Sensitized photocatalyticoxidation of herbicides using natural sunlight,” Journal of Photochemistry and Photobiology A: Chemistry 108, 89-93 (1997)
[43] Yu, J., Yue, L., Liu, S., Huang, B., Zhang, X., “Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres ,” Journal of Colloid and Interface Science 334, 58-64 (2009)
[44] Haruta, M., Yamada N., Kobayashi T., Sano H., “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C,” Catalysis Letters 2, 405-408 (1987)
[45] Andreeva, D., Tabakova, T., Ilieva, L., Naydenov, A., Mehanjiev, D.,Abrashev, M.V., “Nanosize gold catalysts promotrd by vanadium oxide supported on titania and zirconia for complete benzene oxidation,” Applied Catalysis A: General 209, 291-300 (2001)
[46] Dujardin, E., Hsin, L.-B., Wang, C.R.C., Mann, S., “DNA-driven self-assembly of gold nanorods,” Chemical Communications 14, 1264-1265 (2001)
[47] Zanella, R., Louis, C., Giorgio, S., Touroude, R., “Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism,” Journal of Catalysis 223, 328-339 (2004)
[48] Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M., “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation,” Catalysis Letters 44, 83-87 (1997)
[49] Yang, D., Park, S.-E., Lee, J.-K., Lee, S.-W., “Sonochemical deposition of nanosized Au on titanium oxides with different surface coverage and their photocatalytic activity ,” Journal of Crystal Growth 311, 508-511 (2009)
[50] Orlov, A., Jefferson, D.A., Tikhov, M., Lambert, R.M., “Enhancement of MTBE photocatalytic degradation by modification of TiO2 with gold nanoparticles ,” Catalysis Communications 8, 821-824 (2007)
[51] Wu, Y., Zhang, J., Xiao, L., Chen, F., “Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants ,” Applied Catalysis B: Environmental 88, 525-532 (2009)
[52] Kowalska, E., Abe, R., Ohtani, B., “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis ,” Chemical Communications 2, 241-243 (2009)
[53] Tian, B., Li, C., Gu, F., Jiang, H., “Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2 ,” Catalysis Communications 10, 925-929 (2009)
[54] Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., Letsinger, R.L., “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes ,” Journal of the American Chemical Society 120, 1959-1964 (1998)
[55] Du, L., Furube, A., Yamamoto, K., Hara, K., Katoh, R., Tachiya, M., “Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: Dependence on TiO2 particle size ,” Journal of Physical Chemistry C 113, 6454-6462 (2009)
[56] Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R., Louis, C., “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea,” Journal of Catalysis 222, 357 -367 (2004)
[57] Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F.,Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions,” Catalysis Today 72, 89-94 (2002)
[58] Tian, B., Zhang, J., Tong, T., Chen, F., “Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange ,” Applied Catalysis B: Environmental 79, 394-401 (2008)
[59] Buffat, Ph., Borel, J.-P., “Size effect on the melting temperature of gold particles, ” Physical Review A 13 , 2287-2298 (1976)
[60] Valden, M., Pak, S., Lai, X., Goodman, D.W., “Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates ,” Journal of Physical Chemistry 91, 4305-4310 (1987)

QR CODE