簡易檢索 / 詳目顯示

研究生: 謝佳勳
Jia-Xun Xie
論文名稱: 研究透過結構異構實現擴展光色範圍之銥金屬錯合物
Investigation Iridium Complexes with Positional Isomerism to Achieve an Extended Color Range
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: Ir錯合物氰基修飾的2-苯基吡啶磷光有機發光二極體橘光/紅光有機發光二極體
外文關鍵詞: Iridium complexes, cyano-substituted 2-phenylpyridine, phosphorescent OLEDs, orange/red PhOLEDs
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中我們主要目標為開發高效率的黃色與紅色磷光有機發光二極體 (phosphorescent organic light Emitting diodes,簡稱PhOLED)。我們以不同位置的氰基修飾Bis(2-phenylpyridine)(acetylacetonate)iridium (Ir(ppy)2(acac)),產生三種衍生物即Ir(3-CNpy)、Ir(4-CNpy) 和Ir(10-CNpy)。透過理論計算和單晶結構的分析,發現在ppy配體的不同位置上修飾氰基取代可以調整Ir錯合物的電子雲分佈和配位鍵結長度。因此Ir錯合物的電荷轉移能力增強,使得氰基取代的Ir(ppy)2(acac) 衍生物能隙縮小。三個目標分子的光致發光光譜主峰波長位於黃色至紅色區間 (544 nm至625 nm)。此外Ir(3-CNpy)、Ir(4-CNpy) 和Ir(10-CNpy) 分別表現出83%、54% 和75% 的高PLQY。值得注意的是,採用Ir(3-CNpy) 作為發光體的元件表現出最大外部量子效率 (external quantum efficiency,簡稱EQE) 為25.4%,電流效率 (current efficiency,簡稱CE) 為56.9 cd⸱A-1,功率效率 (power efficiency,簡稱PE) 為68.7 lm⸱W-1,並在8 V時達到最大亮度61,340 cd⸱m-2。該元件的EQE在亮度為1,000和10,000 cd⸱m-2時保持為24.3% 和19.9%,其對應的效率滾降分別為4.3% 和21.7%。與使用具有擴展共軛結構的配體之Ir錯合物相比,我們的結果證明了一種簡單的磷光發光體分子設計策略,並降低Ir錯合物本身的分子量,在黃光至紅光區域實現高效率的PhOLED。


    In this study, our main goal was to develop highly efficient yellow and red phosphorescent organic light-emitting diodes phosphorescent organic light-emitting diodes (PhOLEDs). We modified bis(2-phenylpyridine)(acetylacetonate)iridium (Ir(ppy)2(acac)) with cyano groups at different positions to generate three compounds, namely Ir(3-CNpy), Ir(4-CNpy) and Ir(10-CNpy). Through theoretical calculation and single crystal structure analysis, it was found that the electron cloud distribution and coordination bond length of the Ir complex could be adjusted by cyano substitution at different positions of the ppy ligand. Therefore, the charge transfer ability of Ir complexes was enhanced, and the energy gap of cyano-substituted Ir(ppy)2(acac) derivatives was narrowed. The main peak wavelengths of the photoluminescence spectra of the three Ir complexes were located in the yellow to red range (544 nm to 625 nm). Furthermore, Ir(3-CNpy), Ir(4-CNpy) and Ir(10-CNpy) exhibited high PLQY of 83%, 54% and 75%, respectively. Notably, the device using Ir(3-CNpy) as the emitter exhibited a maximum external quantum efficiency (EQE) of 25.4% and a current efficiency (CE) of 56.9 cd⸱A-1. The power efficiency (PE) was 68.7 lm⸱W-1 and reaches a maximum brightness of 61,340 cd⸱m-2 at 8 V. At luminances of 1,000 and 10,000 cd⸱m-2, the device maintains an EQE of 24.3% and 19.9%, corresponding to an efficiency roll-off of 4.3% and 21.7%, respectively. Compared with Ir complexes using ligands with extended conjugated structures, our results demonstrate a simple molecular design strategy for phosphorescent emitters and reduce the molecular weight of the Ir complexes themselves in the yellow to red region, achieving highly efficient PhOLEDs.

    摘要 i ABSTRACT ii 致謝 iii 第一章、緒論 1 1-1前言 1 1-2有機發光二極體的歷史發展 2 1-3有機發光二極體的發光原理 5 1-3-1 基礎理論 5 1-3-2 主客體能量轉移機制 6 1-3-3 有機電致發光元件的發光原理 8 第二章、文獻回顧 11 2-1發光材料特性探討 11 2-2 Ir(ppy)2acac 13 2-3文獻探討 14 2-3-1 含C,N-雜環的配體 15 2-3-2 含N,N-雜環的配體 17 2-3-3 含S,N-雜環的配體 18 2-3-4 含O,N-雜環的配體 21 2-3-5官能基團/取代基修飾 22 2-3-6輔助配體 26 2-4磷光材料設計與動機 28 第三章 製程介紹 29 3-1設備介紹 29 3-2實驗流程 33 3-3實驗使用的商用材料 35 第四章 結果與討論 37 4-1氰基修飾的ppy-based Ir complexes的合成和熱性能 37 4-2單晶結構 39 4-3光物理特性 41 4-4電化學性質 45 4-5理論計算 47 4-6元件性能 50 第五章 結論與未來展望 65 參考文獻 66

    〔1〕 M. Pope, H. P. Kallman, P. Magnante, Electroluminescence in Organic Crystals., J. Chem. Phys., 38, 2042 (1963).
    〔2〕 C. W. Tang, S. A. VannSlyke, P. Magnante, Organic electroluminescent diodes., Appl. Phys. Lett., 51(12), 913 (1987).
    〔3〕 C. W. Tang, S. A. VannSlyke, C. H. Chen, Electroluminescence of doped organic thin films., J. Appl. Phys., 65, 3610 (1989).
    〔4〕 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Light-emitting diodes based on conjugated polymers., Nat. volume., 347, 539 (1990)
    〔5〕 V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest, Bright, saturated, red-to-yellow organic light-emitting devices
    based on polarization-induced spectral shifts., Chem. Phys. Lett., 287, 455 (1998)
    〔6〕 T. Forster, 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation., Discuss. Faraday Soc., 27, 7 (1959).
    〔7〕 M. Zhu and C. Yang, Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes., Chem. Soc. Rev., 42, 4963 (2013).
    〔8〕 D. L. Dexter, A Theory of Sensitized Luminescence in Solids., J. Chem. Phys., 21, 836 (1953).
    〔9〕 D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, Improved energy transfer in electrophosphorescent devices., Appl. Phys. Lett., 74, 442 (1999).
    〔10〕T. Hau, Y.-C. Liu, C.-W. Huang, N. Li, C. Zhou, Z. Huang, X. Cao, C.-C. Wu, C. Yang, High-Efficiency and Low Roll-Off Deep-Blue OLEDs Enabled by Thermally Activated Delayed Fluorescence Emitter with Preferred Horizontal Dipole Orientation., Chem. Eng. J., 433, 133598 (2022).
    〔11〕J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence., Adv. Mater., 29, 1604856 (2017).
    〔12〕Y. Hu, Y. Zhang, W. Han, J. Li, X. Pu, D. Wu, Z. Bin, J. You, Orange–Red Organic Light Emitting Diodes with High Efficiency and Low Efficiency Roll-Off: Boosted by a Fused Acceptor Composed of Pyrazine and Maleimide., Chem. Eng. J., 428, 131186 (2022).
    〔13〕D. Zhang, X. Song, M. Cai, H. Kaji, L. Duan, Versatile Indolocarbazole-Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Roll-Off., Adv. Mater., 30, 1705406 (2018).
    〔14〕C.-H. Chiu, N. R. Al Amin, J.-X. Xie, C.-C. Lee, D. Luo, S. Biring, K. Sutanto, S.-W. Liu, C.-H. Chen, A Phosphorescent OLED with an Efficiency Roll-Off Lower than 1% at 10 000 cd m−2 Achieved by Reducing the Carrier Mobility of the Donors in an Exciplex Co-Host System., J. Mater. Chem. C, 10, 4955 (2022).
    〔15〕T. Zhang, J. Miao, M. U. Ali, M. Shi, Y. He, T. Fu, H. Meng, A Phosphorescent OLEDs with Extremely Low Efficiency Roll-Off Enabled Via Rationally Designed Benzimidazole-Based Bipolar Hosts., Dyes Pigm., 180, 108477 (2020).
    〔16〕M. Chen, J. Yang, Z. Ye, S. Wang, Z. Tang, G. Chen, Y. Zheng, Y. Shi, B. Wei, W.-Y. Wong, Extremely Low-Efficiency Roll-Off of Phosphorescent Organic Light-Emitting Diodes at High Brightness Based on Acridine Heterocyclic Derivatives., J. Mater. Chem. C, 6, 9713 (2018).
    〔17〕Y. You, S. Y. Park, Phosphorescent Iridium(III) Complexes: Toward High Phosphorescence Quantum Efficiency through Ligand Control., Dalton Trans., 8, 1267 (2009).
    〔18〕K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, J.-J. Kim, Highly Efficient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments., Adv. Mater., 26, 3844 (2014).
    〔19〕C.-C. Lee, N. R. Al Amin, J.-J. Xu, B.-C. Wang, D. Luo, K. Sutanto, S. Biring, S.-W. Liu, C.-H. Chen, Structural Effect of Phenylcarbazole-Based Molecules on the Exciplex-Forming Co-Host System to Achieve Highly Efficient Phosphorescent OLEDs with Low Efficiency Roll-Off., J. Mater. Chem. C, 9, 9453 (2021).
    〔20〕C. Fan, C. Yang, Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices., Chem. Soc. Rev., 43, 6439 (2014).
    〔21〕S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes., J. Am. Chem. Soc., 123, 4304 (2001).
    〔22〕C.-L. Li, Y.-J. Su, Y.-T. Tao, P.-T. Chou, C.-H. Chien, C.-C. Cheng, R.-S. Liu, Yellow and Red Electrophosphors Based on Linkage Isomers of Phenylisoquinolinyliridium Complexes: Distinct Differences in Photophysical and Electroluminescence Properties., Adv.Funct.Mater., 3, 15 (2005).
    〔23〕S. L. Lai, S. L. Tao, M. Y. Chen, T. W. Ng, M. F. Lo, C. S. Lee, X. H. Zhang, S. T. Lee, Efficient white organic light-emitting devices based on phosphorescent iridium complexes., Org. Electron., 11, 1511 (2010).
    〔24〕J. P. Duan, P. P. Sun, C. h. Cheng, New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light-Emitting Diodes., Adv. Mater., 15, No. 3 (2003).
    〔25〕G. Zhang, H. Guo, Y. Chuai, D. Zou, Synthesis and luminescence of a new phosphorescent iridium(III) pyrazine complex., Mater. Lett., 59, 3002 (2005).
    〔26〕C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, C. Yang, High Power Efficiency Yellow Phosphorescent OLEDs by Using New Iridium Complexes with Halogen-Substituted 2-Phenylbenzo[d]thiazole Ligands., J. Phys. Chem. C, 117, 19134 (2013).
    〔27〕C. Fan, J. Miao, B. Jiang, C. Yang, H. Wu, J. Qin, Y. Cao, Highly efficient, solution-processed orange–red phosphorescent OLEDs by using new iridium phosphor with thieno[3,2-c]pyridine derivative as cyclometalating ligand., Org. Electron., 14, 3392 (2013).
    〔28〕T.-R. Chen, Synthesis and characterization of cyclometalated iridium(III) complexes containing benzoxazole derivatives and different ancillary ligands., J ORGANOMET CHEM., 693, 3117 (2008).
    〔29〕Zhou, W.-Y. Wong, B. Yao, Z. Xie, L. Wang, Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs., Angew. Chem. Int. Ed, 46, 1149 (2007).
    〔30〕M. Li, H. Zeng, Y. Meng, H. Sun, S. Liu, Z. Lu, Y. Huang, X. Pu, Fine Tuning of Emission Color of Iridium(iii) Complexes from Yellow to Red Via Substituent Effect on 2-Phenylbenzothiazoleligands: Synthesis, Photophysical, Electrochemical and DFT Study., Dalton Trans., 40, 7153 (2011).
    〔31〕X. Yang, N. Sun, J. Dang, Z. Huang, C. Yao, X. Xu, C.-L. Ho, G. Zhou, D. Ma, X. Zhao, W.-Y. Wong, Versatile Phosphorescent Color Tuning of Highly Efficient Borylated Iridium(iii) Cyclometalates by Manipulating the Electron-Accepting Capacity of the Dimesitylboron Group., J. Mater. Chem. C 1, 3317 (2013).
    〔32〕X. Yang, H. Guo, B. Liu, J. Zhao, G. Zhou, Z. Wu, W.-Y. Wong, Diarylboron-Based Asymmetric Red-Emitting Ir(III) Complex for Solution-Processed Phosphorescent Organic Light-Emitting Diode with External Quantum Efficiency above 28%., Adv. Sci., 5, 1701067 (2018).
    〔33〕J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, Highly Efficient Green-Emitting Phosphorescent Iridium Dendrimers Based on Carbazole Dendrons., Adv. Funct. Mater., 16, 575 (2006).
    〔34〕Y. Chi, P.-T. Chou, Transition-metal phosphors with cyclometalating ligands: fundamentals and applications., Chem. Soc. Rev., 39, 638 (2010).
    〔35〕Y. You, K. S. Kim, T. K. Ahn, D. Kim, S. Y. Park, Direct Spectroscopic Observation of Interligand Energy Transfer in Cyclometalated Heteroleptic Iridium(III) Complexes: A Strategy for Phosphorescence Color Tuning and White Light Generation., J. Phys. Chem. C, 111, 4052 (2007).
    〔36〕Y. You, S. Y. Park, Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex:  Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure., J. Am. Chem. Soc., 127, 12438 (2005).
    〔37〕S. Yoon, T. S. Tees, Red to near-infrared phosphorescent Ir(iii) complexes with electron-rich chelating ligands., Chem. Commun., 57, 19751988 (2021).
    〔38〕Z. Chen, H. Zhang, D. Wen, W. Wu, Q. Zeng, S. Chen, W.-Y. Wong, A Simple and Efficient Approach Toward Deep-Red to Near-Infrared-Emitting Iridium(iii) Complexes for Organic Light-Emitting Diodes with External Quantum Efficiencies of Over 10%., Chem. Sci., 11, 2342 (2020).
    〔39〕Z.-G. Niu, D. Liu, D.-C. Li, J. Zuo, J.-M. Yang, Y.-H. Su, Y.-D. Yang, G.-N. Li, Four New Cyclometalated Phenylisoquinoline-Based Ir(III) Complexes: Syntheses, Structures, Properties and DFT Calculations., Inorg. Chem. Commun., 43, 146 (2014).
    〔40〕Y. Jeon, I. Noh, Y. C. Seo, J. H. Han, Y. Park, E. H. Cho, K. C. Choi, Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics., ACS Nano, 14, 15688 (2020).
    〔41〕W. Lv, Z. Zhang, K. Y. Zhang, H. Yang, S. Liu, A. Xu, S. Guo, Q. Zhao, W. Huang, A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia., Angew. Chem. Int. Ed., 55, 9947 (2016).
    〔42〕H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, The Triplet State of Organo-Transition Metal Compounds. Triplet Harvesting and Singlet Harvesting for Efficient OLEDs., Coord. Chem. Rev., 255, 2622 (2011).
    〔43〕L.-S. Cui, Y. Liu, X.-Y. Liu, Z.-Q. Jiang, L.-S. Liao, Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with Horizontal Orientation for Orange and White Phosphorescent OLEDs., ACS Appl. Mater. Interfaces., 7, 11007 (2015).
    〔44〕X. Li, X. Tong, Y. Yin, H. Yan, C. Lu, W. Huang, Q. Zhao, Using Highly Emissive and Environmentally Sensitive o-Carborane-Functionalized Metallophosphors to Monitor Mitochondrial Polarity., Chem. Sci., 8, 5930 (2017).
    〔45〕C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators., Chem. Rev., 94, 2319 (1994).
    〔46〕Z.-G. Niu, L.-P. Yan, L. Wu, G.-Y. Chen, W. Sun, X. Liang, Y.-X. Zheng, G.-N. Li, J.-L. Zuo, Iridium(III) Complexes Adopting Thienylpyridine Derivatives for Yellow-to-Deep Red OLEDs with Low Efficiency Roll-Off., Dyes Pigm., 162, 863 (2019).
    〔47〕Z. Wang, M. Li, L. Gan, X. Cai, B. Li, D. Chen, S.-J. Su, Predicting Operational Stability for Organic Light-Emitting Diodes with Exciplex Cohosts., Adv. Sci., 6, 1802246 (2019).
    〔48〕S.-N. Liu, K.-N. Tong, Y. Zhao, J.-F. Cheng, M.-K. Fung, J. Fan, Efficient Red Phosphorescent Ir(III) Complexes Based on Rigid Ligands with High External Quantum Efficiency and Low Efficiency Roll-Off., J. Mater. Chem. C, 8, 6168 (2020).
    〔49〕W. Dang, X. Yang, Z. Feng, Y. Sun, D. Zhong, G. Zhou, Z. Wu, W.-Y. Wong, Asymmetric Tris-Heteroleptic Iridium(iii) Complexes Containing Three Different 2-Phenylpyridine-Type Ligands: A New Strategy for Improving the Electroluminescence Ability of Phosphorescent Emitters., J. Mater. Chem. C, 6, 9453 (2018).
    〔50〕Y. Sun, X. Yang, B. Liu, J. Dang, Y. Li, G. Zhou, Z. Wu, W.-Y. Wong, Towards High Performance Solution-Processed Orange Organic Light-Emitting Devices: Precisely-Adjusting Properties of Ir(iii) Complexes by Reasonably Engineering the Asymmetric Configuration with Second Functionalized Cyclometalating Ligands., J. Mater. Chem. C, 7, 8836 (2019).
    〔51〕X. Yang, X. Chen, J. Dang, Y. Sun, Z. Feng, Z. Tian, G. Zhou, Z. Wu, Dinuclear Ir(III) Complex Based on Different Flanking and Bridging Cyclometalated Ligands: An Impressive Molecular Framework for Developing High Performance Phosphorescent Emitters., Chem. Eng. J., 391, 123505 (2020).

    無法下載圖示 全文公開日期 2025/07/31 (校內網路)
    全文公開日期 2025/07/31 (校外網路)
    全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE