簡易檢索 / 詳目顯示

研究生: 張君偉
Chung-wei Chang
論文名稱: 雙階段濺鍍技術於氧化鋅焦電感測器響應之影響
The effects of ZnO films deposited by a two-step RF sputtering technique on the responsivity of ZnO pyroelectric sensors
指導教授: 趙振綱
Ching-kong Chao
口試委員: 李維楨
Wei-chen Lee
蕭俊卿
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 焦電薄膜射頻功率氧化鋅
外文關鍵詞: ZnO, pyroelectric, pyroelectric sinsor
相關次數: 點閱:152下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

焦電薄膜感測器是以溫度變化產生焦電訊號。本文分別使用三種射頻源功率90W、120W及150W進行單階段濺鍍氧化鋅焦電薄膜,及此三種射頻源功率構成六種組合以雙階段的濺鍍技術沈積氧化鋅焦電薄膜。氧化鋅焦電薄膜感測器主要利用微機電製程製作,其中包含背面蝕刻窗型孔;以LPCVD來沈積氮化矽隔熱層;電子束蒸鍍機沈積上下電極層;及濺鍍機沈積氧化鋅焦電薄膜。然而,氧化鋅薄膜之特性是為關鍵因素將能量轉換成焦電訊號。因此探討氧化鋅薄膜的機械性質、結晶構造及表面型態以改善氧化鋅焦電薄膜感測器之響應則是本文研究重點。
以部份電極來覆蓋焦電層的焦電感測器已證實比完全覆蓋電極的焦電感測器有優良之焦電響應,主要因未被覆蓋的焦電感測器中,裸露之氧化鋅薄膜有助於增加吸收外在能量。且以部份電極所製成的焦電感測器可方便探測氧化鋅薄膜機械性質及表面形貌。量測方式主要以氦氖雷射,搭配斷波器控制紅外線的頻率,來量測焦電感測器的電壓響應,並使用X射線繞射儀(XRD)以及掃描式電子顯微鏡(SEM),來探討氧化鋅薄膜的晶體結構及表面形貌,再以奈米壓痕儀來檢測氧化鋅薄膜的機械性質。
氧化鋅焦電薄膜感測器所量測之電壓響應與上電極形狀、氧化鋅薄膜表面形貌、焦電係數、機械性質(硬度與彈性係數)及晶格結構有絕對關聯性。雙階段濺鍍氧化鋅薄膜中,以試片2 (120W+150W)的電壓響應最為優異且有較好c-axis取向之結晶結構,而單階段濺鍍氧化鋅薄膜中,以試片8 (120W)的電壓響應最為優異及較佳結晶結構。奈米壓痕實驗中,對於單階段濺鍍氧化鋅薄膜之機械性質與感測器之電壓響應有絕對之相關性。於裸露氧化鋅上鍍鎳增加吸收率,鍍鎳試片比未鍍鎳試片,在高頻率時明顯擁有較好電壓響應。


Thin-film ZnO pyroelectric sensors use the pyroelectric effect to convert temperature variation to corresponding electrical signal. A two-step radio frequency (RF) sputtering deposition technique for ZnO films formation applied on pyroelectric sensors was presented. The three varied RF powers as 90W, 120W and 150W were used to deposit ZnO films for single step RF sputtering and construct six different processing alternatives for two-step RF sputtering ZnO films. The ZnO pyroelectric sensors were fabricated by procedure of MEMS fabrication included backside-etching windows, isolation layer of silicon nitride deposited by LPCVD, top and bottom electrodes deposited by e-beam evaporator, and sputtering ZnO thin films. Then, the characteristics of ZnO thin films were critical element to generate the pyroelectric signals when incident energy was applied to sensors. The interaction among fabrication of ZnO pyroelectric sensors, morphology, crystal structures and mechanical properties of ZnO thin films to improve the responsivity was presented in this study.
Pyroelectric sensor with partially covered electrode (PCE) has been proved to reveal higher responsivity than that with fully covered electrode. The uncovered ZnO thin film directly exposes surface to increase the absorption of incident energy in PCE pyroelectric sensor, which provides a convenience to probe the characteristics of ZnO thin films. A He-Ne laser as IR radiation source with a chopper at a modulated frequency was used to measure the responsivity of pyroelectric sensors. An X-ray diffractometer (XRD) and scanning electron microscopy (SEM) were used to investigate the crystal structures and the morphology of the ZnO films. The nanoindenter was used to probe the mechanical properties of ZnO thin films.
The results of current work presented that the voltage responsivity of ZnO pyroelectric sensors was related to the shape of top electrode, the morphology, pyroelectric coefficient, crystal structures and mechanical properties (hardness and elastic modulus) of ZnO thin films significantly. The voltage responsivity of ZnO pyroelectric sensors was presented high performance in Sample 2 (120W+150W) and Sample 8 (120W) for the two-step and the single RF ZnO sputtering technique respectively due to the ZnO films possessed the growth characteristic of strongly preferred orientation toward the c-axis. The mechanical properties of ZnO films sputtered by the single step RF ZnO sputtering technique was related to the voltage responsivity of ZnO pyroelectric sensors. The Ni layer deposited on ZnO films was obvious to increase the optical absorption and the voltage responsivity of ZnO pyroelectric sensors in high frequency region.

摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 7 第二章 理論介紹 16 2.1 紅外線輻射 16 2.2 焦電效應 17 2.3 焦電響應 18 2.4 奈米壓痕法 21 第三章 感測器之製作 30 3.1 感測器之設計 30 3.2 感測器之製程步驟 31 3.3 感測器之製程參數 35 第四章 訊號量測與分析 43 4.1 訊號量測之電路板製作 43 4.2 訊號量測 44 4.3 以SEM來觀察氧化鋅表面型貌 45 4.4 氧化鋅薄膜機械性質分析 46 4.5 以XRD量測氧化鋅薄膜晶格結構 48 4.6 鍍鎳於氧化鋅薄膜表面 48 第五章 結論 75 5.1 結論 75 5.2 未來方向 76 參考文獻 77 作者簡介 82

[1] 曾增春,“溫度量測學”,科技圖書股份有限公司(1983)。
[2] SZE, S.M., “semiconductor sensor,” John Wiley & Sons, Inc(1994).
[3] 劉俊廷,“砷化銦金屬絕緣體半導體電容與紅外線光偵檢器之研究”,國立台灣大學電機工程研究所碩士論文(1998)。
[4] 巫瑞琪,“輻射溫度計”, 國立中央大學光電科學研究所碩士論文(1996)。
[5] Rogalski, A., “Infrared detectors:status and trends,” Progress in Quantum Electronics, Vol. 27, pp. 59-210(2003).
[6] Müller, M., Budde, W., Gottfried, A., Huebel, R., Jähne, R., and Kück, H., “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor,” Sensors and Actuators A, Vol. 54, pp. 601-605(1996).
[7] Lenggenhager, R., “CMOS Thermoelectric Infrared Sensors,” Diss. ETH No. 10744, Physical Electronics Laboratory, ETHZ, Zurich(1994).
[8] 邱建智,“焦電感測元件之製作及特性分析”,國立中山大學電機工程研究所碩士論文(1998)。
[9] Dillner, U., “Thermal Simulation and Realization of Micromachined Thermal Sensor Arrays,” Proceedings of 5th NEXUSPAN Workshop on Thermal Aspects in Microsystem Technology, Budapest, pp. 133-141, (1998).
[10] Tjhen, W, Tamagawa, T., Ye, C. P., Hsueh, C. C., Schiller, P., and Polla, D. L., “Properties of Piezoelectric Thin Films for Micromechanical Devices and Systems,” Proceedings of IEEE Micro Electro Mechanical Systems, pp. 114-119(1991).
[11] Ye, C. P., Tamagawa, T., and Polla, D. L., “Experimental Studies on Primary and Secondary Pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin Film,” Journal of Applied Physics, Vol. 70, No. 10, pp. 5538-5543(1991).
[12] Chong, N., Chan, H. L. W., and Choy, C. L., “Pyroelectric Sensor Array for In-line Monitoring of Infrared Laser,” Sensors and Actuators A, Vol. 96, pp. 231-238(2002).
[13] Ho, J. J., Fang Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Ju, M. S., Huang, S. B., Wu, Kun-Hsien, and Chen, C. Y., “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure,” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 46, No. 12, pp. 2289-2294(1999).
[14] Ho, J. J., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Lee, K. H., Hsieh, M. C., Chang, C. P., and Wu, K. H., “Analysis of Substrate Effects on the Response of Pyroelectric Thin-film Infrared Sensors,” Microscale Thermophysical Engineering, Vol.3, No. 4, pp. 263-272(1999).
[15] Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., “Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3, and PbZrTiO3 ferroelectric thin films,” Ferroelectrics, Vol. 118 pp. 325-342, (1991).
[16] Choi, J. R. and Polla, D., “Integration of microsensors in GaAs MESFET process,” Journal of Micromechanics and Microengineering, Vol. 3 pp. 60-64(1993).
[17] Chang, C. C. and Tang, C. S., “An integrated pyroelectric infrared sensor with PZT thin film,” Sensors and Actuators A, Vol. 65 pp. 171-174(1998).
[18] No, K., Choi, C. G., Yoon, D. S., Sung, T. H., Kim, Y. C., Jeong, I. S., and Lee, W. J., “Pyroelectric properties of Sol-Gel Derived Lanthanum Modified Lead Titanate Thin Films,” Japan Journal of applied Physics, Vol. 35 pp. 2731-2733(1996).
[19] Setiadi, D., Regtien, P. P. L., “A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments,” Sensors and Actuators A, Vol. 46/47 pp. 408-412(1995).
[20] Whatmore, R. W., “Pyroelectric devices and materials,” Rep. Prog. Phys., Vol. 49 pp. 1335-1386(1986).
[21] Lienhard, D., Heepmann, F., and Ploss, B., “Thin nickel films as absorbers in pyroelectric sensor arrays,” Microelectronic Engineering, Vol. 29 pp. 101-104(1995).
[22] Cicco, G. D. , Morten, B., Dalmonego, D., and Prudenziati, M., “Pyroelectricity of PZT-based thick-films,” Sensors and actuators, Vol. 76 pp. 409-415(1999).
[23] Feng, C. S. and Xu, P. M., “The detection mechanism of LiTaO type II pyroelectric detectors: I. The Primary and secondary pyroelectric effects,” Infrared Physics & Technology, Vol. 40 pp. 61-70(1999).
[24] Park, S. H., Seo, B. C., Park, H. D. and Yoon, G. “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications,” Jpa. J. Appl. Phys. Vol. 39 pp. 4115-4119 Part1. No.7A. July(2000).
[25] Zook, J. D., and Liu, S. T., “Pyroelectric effects in thin film,” Journal of Applied Physics, Vol. 49, No. 8 pp. 4604-4606(1978).
[26] Weiguo L, Jongsoo K, Weiguang Z, “Influences of thin Ni layer on the electrical and absorption properties of PZT thin film pyroelectric IR sensors,” Infrared Physics & Technology, Vol. 41 pp. 169-173(2000).
[27] Wei, C. S., Lin, Y. Y., Hu, Y. C., Wu, C. W., Shih, C. K., Huang, C. T., and Chang, S. H., “Partial-electroded ZnO pyroelectric sensors for responsivity improvement,” Sensors and actuators, 128, pp. 18-24(2006).
[28] Yoon, Y. S., Samoilov, V. B., and Kletsky, S. V., “Dnamic response Analysis of Pyroelectric Sensitive Element for Thermal Imaging,” IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 50, No. 4, pp. 461-465(2003).
[29] Kohil, M., Wuethrich, C., Brooks, K., Willing, B., Forster, M., Mmuralt, P., Setter, N., and Ryser, P., “Pyroelectric thin-film sensor array,” Sensors and Actuators, A, Physical, Vol. 60, No. 1-3, pp. 147-153(1997).
[30] Madou, M. J., “Fundamentals of microfabrication,” CRC Press, 2nd ed. (2002).
[31] Weiguo L, Jongsoo K, Weiguang Z, “Substrate effects on the properties of the pyroelectric thin film IR detectors,” Sensors and Actuators A, Vol. 93 pp. 117-122(2001).
[32] 陳靜怡, “氧化鋅中介層對ITO透明導電膜性質之影響”,國立成功大學材料科學及工程學系碩士論文(2002)。
[33] 孫長恩,“以奈米壓痕法及刮痕法探討蒸鍍薄膜之機械性質”,聖約翰技術學院自動化及機電整合研究所碩士論文(2004)。
[34] Nix, W.D., and Gao, H., Indentation size effects in crystalline: a few for strain gradient plasticy, J. Mech. Phys. Solids. 3, 46, p411~425(1998).
[35] 張瑞慶,”奈米壓痕技術與應用”,力學學會會訊,Vol.114(2006).
[36] Bahr D.F., Robach J.S., Wright J.S., Francis L.F., Gerberich W.W., Mechanical deformation of PZT thin films for MEMS applications, Materials Science & Engineering A, A259(1), 126-131(1999).
[37] Doerner M.F., Nix W.D., A method for interpreting the data from depth–sensing indentation instruments, Journal of Materials Research, 1, 601-616(1986).
[38] Beegan D., Chowdhury S., Laugier M.T., The nanoindentation behaviour of hard and soft films on silicon substrates, Thin Solid Films, 466, 167-174(2004).
[39] Kramer D.E., Volinsky A.A., Moody N.R., Gerberich W.W., Substrate effects on indentation plastic zone development in thin soft films, Journal of Materials Research, 16(11), 3150-3157(2001).
[40] Fischer-Cripps A.C., Review of analysis methods for sub-micron indentation testing, Vacuum, 58(4), 569-585(2000).
[41] 王昇源,“焦電薄膜機械性質對紅外線響應之研究”, 華梵大學機械工程學系碩士論文,2006。
[42] Sang H.J., Jae K.K., and Byung T.L., “Effects of growth conditions on the emission properties of ZnO films prepared on Si(100) rf magnetron sputtering.” Journal of applied Physics, Vol. 36 pp.2017-2020, 2003.

QR CODE