簡易檢索 / 詳目顯示

研究生: 吳承桓
Cheng-Huan Wu
論文名稱: 可見光至近紅外波段高光譜儀成像分析與偵測面擺放優化
Imaging Analysis of a Visible-NIR Hyperspectral Imaging System and Its Optimization of Imaging Plane Positioning
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 高光譜儀成像分析半高全寬光譜解析度調制轉移函數聚焦縱深
外文關鍵詞: hyperspectral, imaging analysis, full width at half maximum, spectral resolution, depth of focus, modulation transfer function
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計波段400 – 1000 nm Offner系統光譜儀,設計前須選定光源發散角、光譜成像大小、凹面鏡曲率、光柵條紋間距、繞射階數,以上述規格設計Offner系統架構,定義解像方向為X方向、解光譜方向為Y方向,光行進方向為Z方向。
    本文分成使用點光源分析及狹縫光源分析,點光源大小X方向1 nm、Y方向1 nm,分析使用像素數為512 × 512,像素大小為3.9 μm × 3.9 μm。狹縫光源大小為X方向20 μm、Y方向20 μm,並在光源前方設置X方向0.6 mm、Y方向20 μm的狹縫,分析使用像素數為155 × 155、310 × 310,像素大小分別為12.9 μm × 12.9 μm及6.45 μm × 6.45 μm,此兩像素數依市面實際偵測器像素大小換算而得。
    為了能精確分析波段的成像品質,將波段分波長400 nm、550 nm、700 nm、850 nm、1000 nm分別分析,經分析偵測器接收光線位置大多於聚焦縱深內,為了使波段聚焦能力更佳,將偵測器擺放位置及角度進行校正。
    校正前光源X、Y方向斑點半高全寬約14 μm、總光譜解析度達1.62 nm,狹縫光源之X、Y方向斑點半高全寬達26 μm,總光譜解析度達2.64 nm。MTF圖可評估光學系統品質,應用MTF為0.3對應空間頻率及線對寬作為系統成像品質依據。校正前點光源X、Y方向之MTF為0.3對應空間頻率約為100 cycle/mm,對應線對寬達10 μm,狹縫光源X、Y方向之MTF為0.3對應空間頻率約為46 cycle/mm,對應線對寬度達21 μm。
    經過校正波段400 – 1000 nm更能有效聚焦於偵測面,偵測器位置不僅於聚焦縱深內,且幾乎貼合最小斑點大小擬合曲線,點光源X、Y方向斑點半高全寬約10 μm、總光譜解析度達1.02 nm,狹縫光源之X、Y方向斑點半高全寬達24 μm,也近乎還原光源大小,總光譜解析度達2.36 nm。校正後點光源X、Y方向之MTF = 0.3對應空間頻率約為125 cycle/mm,對應線對寬達8 μm,狹縫光源X、Y方向之MTF = 0.3對應空間頻率約為50 cycle/mm,對應線對寬達20 μm。


    Design of an Offner system spectrometer used for 400 – 1000 nm wavebands is introduced in this paper. It refers the divergence angle of the light, spectral imaging size, radius of concave mirror, grating pitch and the diffraction orders. X coordinates presents the slit image direction, Y is the spectral resolution direction and Z is the light propagation direction.
    Point and slit light source are used for the performance analysis. In this paper, the point light source uses a detector of 512 × 512 pixel number and 3.9 μm × 3.9 μm pixel size. The slit light source uses two detectors of 155 × 155 and 310 × 310 pixel number, and 12.9 μm × 12.9 μm and 6.45 μm × 6.45 μm pixel size with a slit put in front of light source. The size of slit is 0.6 mm in X and 20 μm in Y and the size of the light source is 20 μm x 20 μm in both.
    Five wavelengths, which are 400 nm, 550 nm, 700 nm, 850 nm, and 1000 nm specitied to analyze the quality of image. The results show that most of positions where detectors receive lights are located in the depth of focus. For a better ability of focus quality, correction for imaging plane positioning of detectors are involved.
    After correction, the imaging location are not only within the depth of focus, but are also approaching the minimum spot size. In point source, the FWHM spot size is smaller than 10 μm, and the total spectral resolution of the system is better than 1.02 nm. In slit source, the FWHM spot size is smaller than 24 μm, and the total spectral resolution of the system is better than 2.36 nm.
    In this paper, 0.3 MTF corresponds a basis of the performance for spatial frequency and pitch check image quality. In point source, MTF of 0.3 corresponds to a spatial frequency of 125 cycle/mm and a grating pitch of 8 μm. In slit source, MTF of 0.3 corresponds to a spatial frequency of 50 cycle/mm and a grating pitch of 20 μm.

    致謝I 摘要IV AbstractV 目錄VI 圖目錄VII 表目錄XIV 符號定義表XX 第一章 序論1 1.1 研究背景1 1.2 Offner架構2 1.3 TracePro模擬3 第二章 Offner光譜儀參數設計及建模4 2.1 Offner模型建立流程4 2.2 系統參數整理6 第三章 研究原理及分析7 3.1 半高全寬 (Full Width at Half Maximum, FWHM)7 3.2 光譜解析度7 3.3 調制轉移函數 (Modulation Transfer Function, MTF)8 3.4 聚焦縱深 (Depth of Focus, DoF)10 第四章 模擬結果分析12 4.1 點光源分析12 4.2 狹縫光源分析33 第五章 偵測面校正分析62 5.1 校正後點光源分析63 5.2 校正後狹縫光源分析78 第六章 校正前後數據比較104 第七章 結論116 參考文獻117

    [1]D. X. Tao, G. R. Jia, Y. Yuan and H. J. Zhao, “A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer,” Journal of Sensors, Vol. 14, No. 12, pp. 23822-23842 (2014).
    [2]S. R. Sandor-Leahy, “The TRWIS III Airborne Hyperspectral Imaging System,” 17th Fluid Digital Avionics Systems Conference, Bellevue, USA, pp. H44/1-H44/8 (1998).
    [3]T. Takeda, “Development of A Method to Detect Coral Bleaching using Airborne Hyperspectral Sensor,” IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, pp. 7617-7620 (2012).
    [4]Q. Zhou, G. Wu, Q. P. Wang, C. Shi, Y. J. Tong and Z. H. Ma, “The Design and Field Application of High-resolution Pushbroom Imaging Spectrometer,” Proceedings of the 29th Chinese Control Conference, Beijing, China, pp. 3031-3035 (2010).
    [5]X. Prieto-Blanco, C. Montero-Orille, B. Couce, R. de la Fuente, “Analytical Design of an Offner Imaging Spectrometer,” Optics Express, Vol. 14, pp. 9156-9168 (2006).
    [6]G. F. Marshall, “Laser Beam Scanning,” Scanning, Vol. 9, pp. 289-301 (1985).
    [7]K. Li, G. Y. Li, F. Xiao, F. Lu, Z. H. Wang and A. S. Xu, “Unidirectionally Optical Coupling from Free Space into Silicon Waveguide With Wide Flat-top Angular Efficiency,” Optics Express, Vol. 20, No. 17, pp. 18545-18554 (2012).
    [8]W. W. Zhang, “Research on Modulation Transfer Function of the Electron Multiplying CCD,” Photonics and Optoelectronics Symposium on, Shanghai, China, pp. 1-4 (2012).
    [9]V. Sukumar, “Imaging System MTF- modeling with Modulation Functions,” Industrial Electronics 34th Annual Conference of IEEE, Orlando, USA, pp. 1748-1753 (2008).
    [10]M. Feldman, Nanolithography, Woodhead, Cambridge, pp. 10-11 (2013).
    [11]A. E. Siegman, Lasers, University Science Books, Sausalito, pp. 664-669 (1986).
    [12]M. Dieter, Optics, Light and Lasers, Wiley-VCH, Weinheim, pp. 46-48 (2007).
    [13]M. Borengasser, W. S. Hungate and R. Watkins, Hyperspectral Remote Sensing: Principles and Applications, CRC Press, Boca Raton, pp. 18-23 (2002).
    [14]E. Hecht, Optics, Addison Wesley, San Francisco, pp. 479-481 (2002).
    [15]P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, Vol 3, pp. 286-310 (2013).
    [16]M. Türkmenoğlu, “On-orbit Modulation Transfer Function Estimation For RASAT,” Recent Advances in Space Technologies 6th International Conference, Istanbul, Turkey, pp. 181-183 (2013).
    [17]D. Leger, J. Duffaut and F. Robinet, “MTF Measurement using Spotlight,” Geoscience and Remote Sensing Symposium, Pasadena, USA, pp. 2010-2012 (1994).
    [18]G. Boreman, Modulation Transfer Funcion in Optical and Electro-optical Systems, SPIE-The International Society for Optical Engineering, Washington, pp. 20-25 (2001).

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE