簡易檢索 / 詳目顯示

研究生: 董沱顯
Tuo-Sian Dong
論文名稱: 靜電紡絲製備8YSZ纖維於固態氧化物燃料電池高催化複合陰極之特性研究
Fabrication and investigation of electrospinning 8YSZ fiber and its application in SOFC high catalysis composite cathode
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 靜電紡絲8YSZ纖維複合陰極固態氧化物燃料電池
外文關鍵詞: Electrospinning, 8YSZ fiber, Composite cathode, Solid Oxide Fuel Cells
相關次數: 點閱:168下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討纖維(Fiber)結構運用於固態氧化物燃料電池(Solid Oxide Fuel Cell,SOFC)的纖維複合陰極。由於纖維具有更高的比表面積,可擴大有效的催化面積,使電極對氣體的催化能力提升,並利用交流阻抗分析儀來探討纖維複合陰極氧還原反應的極化損失,以及電化學反應,再搭配X-ray繞射分析儀分析晶體結構、掃描式顯微鏡來分析微觀結構。
利用靜電紡絲法(Electrospinning)製備釔穩定氧化鋯(8YSZ)纖維,藉由改變電紡的不同參數,如電場強度、高分子含量得到不同型貌的纖維。由實驗結果顯示,當電紡溶液的Polyvinyl pyrrolidone(PVP)含量為整體溶液的9.89 wt%、8YSZ離子濃度為15.04 wt%、電場強度為20 kV時,可得到直徑70 nm,且表面平滑連續的8YSZ纖維。
纖維具有高含量的高分子,因此利用熱重分析儀(Thermogravimetry Analysis,TGA)分析,發現當溫度為420℃時,就沒有重量的損失。並經由XRD分析得到燒結溫度超過1000℃,8YSZ纖維將有良好的成相性與結晶性,經由掃瞄式電子顯微鏡得知纖維直徑會隨著燒結溫度的增加而有所提升。
將製備的8YSZ纖維(電場20 kV、高分子濃度為9.89 wt%、8YSZ濃度為15.04 wt%)應用於固態氧化物燃料電池的陰極部份,8YSZ與La0.6Sr0.4Co0.2Fe0.8,(LSCF6428)粉末均勻混合後,配製成膠體後網印在8YSZ的電解質,並燒結不同溫度(1000、1050、1100、1150℃)。
經由掃瞄式電子顯微鏡觀察陰極微觀結構,得知隨著燒結溫度增加,電極的孔隙相對的減少,經由Sigmascan分析發現燒結溫度1000、1050、1100、1150℃的孔隙率分別為26.84%、32.31%、36.94%、44.32%,且由破斷面可看出明顯的孔隙梯度分佈,如此一來有助於氧氣進入電極參與反應。
利用AC交流阻抗分析不同燒結溫度之極化阻抗,當燒結溫度為1050℃時,有最小的極化阻抗(0.77 Ωcm2),在阻抗值換算阿瑞尼士圖也顯示出纖維複合纖維擁有最小的活化能(1.11 eV);鐵弗曲線也可看出在燒結溫度1050℃擁有最高的交換電流密度(141.46 mA/cm2);極化曲線得知其曲線斜率最大,表示有好的氧氣還原反應,並與一般粉末的複合陰極比較後,發現運用纖維可提升電極之電化學反應。
最後量測一般複合陰極及纖維複合陰極單電池的發電效應,陽極使用傳統的Ni-8YSZ,燃料氣體使用40%H2,其功率密度分別為42.26 mW/cm2及46.66 mW/cm2,表示纖維取代粉末後可有效提升固態氧化物燃料電池有效能;另外,使用具高離子導的新型陽極(Ni-YMSZ)取代傳統陽極,並搭配纖維複合陰極,其功率密度提升至51.25 mW/cm2。


This research was focused on the electrospinning and cathode material, Investigation of electrospinning 8YSZ fiber and its application in SOFC composite cathode, fiber has appear several amazing characteristics such as very large surface area to volume ratio. Using fiber in the cathode to expand the effective catalysis area of cathode, and also improve dissolution ability of the electrode to oxygen. The cathode effect on polarization loss of cathode oxygen reduction reaction and electrical chemical reaction with electrochemical impedance spectroscopy. Tafel curve analysis was used to observe the performance of electrochemical reaction at the TPB’s and power density measurement was used to check the efficiency of the fuel cell.

8YSZ fibers were fabricated by electrospinning process which is a low cost production methode. Electrospinning was involved with many effective parameters. Viscosity of the solution and the applied voltage played a significant role to generate long and uniform size fibers. Electrospinning technique was adopted to produce 8YSZ fibers using PVP as solvent material. The best result is achieved with PVP concentration of 9.89 wt% and electric field of 20 kV to get smooth fibers. Fibers of average size of 70 nm were generated using electrospinning.

According to the statistics from Thermogravimetry Analysis(TGA), no weight loss above 600℃. Sintering temperature above 1000℃, 8YSZ fibers analyzed by XRD was Cubic phase. Scanning electron micrographs of the fibers sintered at various temperatures show increasing fiber size and length.

The mixture of 8YSZ fibers and La0.6Sr0.4Co0.2Fe0.8 powder(LSCF) at the ratio of 20:80 in weight percent were used to screen print on 8YSZ electrolyte. The bulks were sintered at different temperatures(1000, 1050, 1100 and 1150℃). Scanning electron micrographs of the cathode sintered at various temperatures show increasing fibers and LSCF grains size and decreasing porosity of cathode.

AC impedance analysis of electrolyte-supported half cell(LSCF-8YSZ fiber/8YSZ/Pt) , the least value of area specific resistance at sintering temperature of 1050℃, because this sintering temperature has more triple phase boundary(TPB) and the best porosity distribution. Moreover, the energy required to activate the electrochemical reaction is lower(1.11 eV) in the cathode sintered at 1050℃.

Exchange current density measured using Tafel curves and polarization curve(I vs.η curve) indicates that the electrochemical reaction is faster at sintering temperature of 1050℃.

Among the sintering temperature of LSCF-8YSZ fiber cathode, sintering temperature at 1050℃ performed the best because the cathode electrical impedance was quite low(0.77 Ωcm2) and the highest change current density(141.46 mA/cm2). Additionally the catalysis was significantly improved, due to the fastest Oxygen reduction reaction rate.

The efficiency of the single cell in converting the chemical energy in to electrical energy was estimated by measuring the power density using 40%H2+60N2(100 sccm) as fuel and air as oxidant. Using Ni-8YSZ as anode material, Ni-8YSZ/8YSZ/LSCF-8YSZ fibers single cell has shown the power density of 46.66 mW/cm2 at 800℃ which is much higher than Ni-8YSZ/8YSZ/LSCF-8YSZ powders. And to go though the single cell test with excellent ionic conductivity of the electrolyte materials Zr0.92Y0.155Mg0.005O2.0775(YMSZ) replaced 8YSZ powders of anode, Ni-YMSZ/8YSZ/LFCF-8YSZ fibers has shown higher power density of 51.26 mW/cm2 than traditional anode material.

目錄 摘要...............................................................I 目錄.............................................................III 第一章 緒論......................................................1 第二章 文獻回顧..................................................2 2-1 燃料電池之概述.................................................2 2-2 固態氧化物燃料電池原理.........................................3 2-3 固態氧化物燃料電池之電解質.....................................5 2-4 固態氧化物燃料電池之陰極材料...................................7 2-4-1 常用陰極材料介紹.............................................9 2-4-2 固態氧化物燃料電池之極化現象................................10 2-4-3 陰極氧化還原反應............................................12 2-5 奈米纖維之概況 ................................................14 2-5-1 奈米纖維之簡介..............................................14 2-5-2 製作奈米纖維的方式..........................................14 2-5-3 靜電紡絲法簡介..............................................20 2-5-4 靜電紡絲機原理..............................................20 2-5-5 靜電紡絲形成纖維各式參數....................................21 2-5-6 纖維陰極概念 ................................................23 2-6 電化學交流阻抗圖譜............................................23 2-7 鐵弗曲線......................................................26 2-8 極化曲線......................................................28 2-9 研究動機與目的................................................28 第三章 實驗方法與步驟...........................................31 3-1 實驗藥品規格..................................................31 3-2 實驗步驟與流程 ................................................33 3-3 試片製備......................................................34 3-3-1 電解質製作..................................................34 3-3-2 電解質燒結成形..............................................34 3-3-3 電解質金相處理..............................................34 3-3-4 陰極粉末製備 ................................................34 3-3-5 靜電紡絲製備纖維............................................35 3-3-6 電極膠體製作................................................35 3-3-7 LSCF-8YSZ fiber/8YSZ/Pt半電池之製作.........................36 3-4 試片物理性質之量測............................................37 3-4-1 密度之量測..................................................37 3-4-2 X-ray繞射分析...............................................38 3-4-3 SEM微觀結構分析.............................................38 3-4-4 交流阻抗(AC impedance)量測..................................39 3-4-5 鐵弗曲線(Tafel curve)之量測.................................39 3-4-6 極化曲線(Polarization Curve,PC)之測量......................39 3-4-7 功率密度量測 ................................................40 第四章 結果與討論...............................................42 4-1 靜電紡絲製程參數對纖維形貌之影響..............................42 4-1-1 不同電場強度對纖維之影響....................................42 4-1-2 不同高分子濃度對纖維之影響..................................45 4-1-3 不同鹽類濃度對纖維之影響....................................49 4-2 8YSZ纖維TGA及XRD分析..........................................51 4-3 8YSZ纖維於不同燒結溫度之 SEM微觀結構..........................53 4-4 纖維與一般複合陰極之SEM微觀結構...............................55 4-5 EIS交流阻抗分析圖譜...........................................66 4-6 複合纖維陰極之阿瑞尼士圖分析..................................73 4-7 鐵弗曲線分析..................................................75 4-8 極化曲線......................................................80 4-9 功率密度之量測................................................82 第五章 結論.....................................................84 參考文獻..........................................................86 圖目錄 圖2-1固態氧化物燃料電池之工作原理..................................3 圖2-2固態氧化物燃料電池之反應路徑..................................4 圖2-3氧化鋯摻雜三價陽離子形成氧空缺示意圖..........................6 圖2-4不同氧化釔含量YSZ材料導電率...................................7 圖2-5鈣鈦礦結構....................................................8 圖2-6純陰極及複合陰極之三相點反應..................................9 圖2-7固態氧化物燃料電池極化損失圖.................................12 圖2-8固態氧化物燃料電池之陰極氧化還原反應.........................13 圖2-9經由抽絲法製作奈米纖維之過程.................................15 圖2-10抽絲法高分子聚合物黏度長纖維直徑之關係圖....................15 圖2-11利用相分離法製作奈米纖維的過程..............................16 圖2-12利用模板合成法製作奈米纖維的過程............................17 圖2-13靜電紡絲法示意圖............................................18 圖2-14泰勒錐示意圖................................................21 圖2-15正弦電壓微擾動和產生的正弦電流響應..........................25 圖2-16電極之交流阻抗圖譜..........................................26 圖2-17鐵弗曲線圖..................................................27 圖2-18α值與氧化還原反應之關係圖...................................27 圖2-19一般複合陰極及纖維複合陰極運用於電池之示意圖................30 圖3-1 實驗步驟流程圖..............................................33 圖3-2 三極式電解質支撐半電池......................................36 圖3-3 量測密度天秤示意圖..........................................38 圖3-4 coreware軟體顯示鐵弗曲線圖..................................40 圖3-5 coreware軟體顯示極化曲線圖..................................41 圖3-6 功率密度曲線圖..............................................41 圖4-1不同的電場強度下(a)10、(b) 15、(c)20 kV對纖維形貌之影響..............................................44 圖4-2不同PVP含量之纖維高分子與離子之糾結情況......................45 圖4-3不同的重量百分比PVP分別為(a)8.38、(b)9.89、(c)11.35 wt%佔整體溶液濃度對纖維形貌之影響......................................................46 圖4-4高分子含量為12.77 wt%呈現板狀纖維結構.......................47 圖4-5寬板狀纖維的形成機制.........................................47 圖4-6中空纖維結構.................................................48 圖4-7中空纖維的形成機制...........................................48 圖4-8不同8YSZ濃度(a) 15.04、(b)20.99、(c)26.16 wt%對纖維之微觀結構.......50 圖4-9 8YSZ纖維之熱重分析圖........................................52 圖4-10纖維於不同燒結溫度(a) 500、(b) 800、(c) 1000、(d) 1300、(e) 1500℃持溫2小時之X-ray繞射圖...................................................52 圖4-11纖維於不同燒結溫度(a)500、(b)1000、(c)1200、(d)1500℃持溫1小時之微觀結構..................................54 圖4-12纖維複合陰極燒結(a)(b)1000、(c)(d)1050、(e)(f)1100、(g)(h)1150℃之表面微觀..............................57 圖4-13纖維複合陰極燒結(a)1000、(b)1050、(c)1100、(d)1150℃之孔隙率分析....58 圖4-14 一般複合陰極燒結(a) 1000、(c) 1050、 (e) 1100、(g) 1150℃之表面微觀,(b) 1000、(d) 1050、 (f) 1100、(h) 1150℃之孔隙率分析.............59 圖4-15纖維複合陰極燒結(a) 1000℃、(b) 1050℃之破斷面微觀結構......62 圖4-16纖維複合陰極燒結(a) 1100℃、(b) 1150℃之破斷面微觀結構......63 圖4-17一般複合陰極燒結(a) 1000℃、(b) 1050℃之破斷面微觀結構......64 圖4-18陰極與電解質接合情況,燒結(a) 1000℃、(b) 1050℃、(c) 1100℃、(d) 1150℃之破斷面微觀結構...................65 圖4-19 工作溫度為600℃下,纖維複合陰極於燒結溫度(a) 1000、(b) 1050、(c) 1100、(d) 1150℃與一般複合陰極(e) 1000、(f) 1050℃之交流阻抗圖..........69 圖4-20 工作溫度為700℃下,纖維複合陰極於燒結溫度(a) 1000、(b) 1050、(c) 1100、(d) 1150℃與一般複合纖維(e) 1000、(f) 1050℃之交流阻抗圖..........70 圖4-21 工作溫度為800℃下,纖維複合陰極於燒結溫度(a) 1000、(b) 1050、(c) 1100、(d) 1150℃與一般複合陰極(e) 1000、(f) 1050℃之交流阻抗圖..........71 圖4-22 工作溫度為800℃下,纖維複合陰極於燒結溫度(a) 1000、(b) 1050、(c) 1100、(d) 1150℃與一般複合陰極(a) 1000、(b) 1050℃之ASR曲線圖...........72 圖4-23 纖維與一般複合陰極在不同燒結溫度下之阿瑞尼士圖.............74 圖4-24 纖維複合陰極於燒結溫度 (a) 1000、(b)1050、(c)1100、(d)1150℃與一般複合陰極(e) 1000、 (f) 1050℃之鐵弗曲線...77 圖4-25 纖維與一般複合陰極在不同燒結溫度下之交換電流密度曲線圖.....78 圖4-26 LSCF-8YSZ fiber/8YSZ/Pt半電池於不同燒結溫度下,在工作溫度為800℃之比面電阻及交換電流密度曲線交叉比對圖......79 圖4-27 纖維複合陰極於燒結溫度(a) 1000、 (b)1050、 (c)1100、 (d)1150℃與一般複合陰極(d)1000、(e)1050℃之極化曲線圖................................81 圖4-28 (a) 一般複合陰極、(b) 纖維複合陰極、(c) 新型陽極(YMSZ)+ 纖維複合陰極單電池之功率密度.....................83 表目錄 表2-1常見燃料電池基本特性及資訊....................................2 表2-2固態氧化物燃料電池反應式......................................5 表2-3各種奈米纖維製程之優、缺點...................................18 表2-4各種奈米纖維製程之常用材料、溶劑、尺寸.............19 表3-1藥品名稱、規格及相關資料......31 表3-2儀器及設備詳細資料...........32 表4-1複合纖維陰極於不同燒結溫度下之孔隙率.........................60 表4-2一般複合陰極於不同燒結溫度下之孔隙率.........................60 表4-3複合陰極於不同燒結溫度下之比面電阻...........................72 表4-4纖維複合陰極於不同燒結溫度下之活化能.........................74 表4-5纖維複合陰極於不同燒結溫度下之交換電流密度...................78

1.黃鎮江 2003. 燃料電池. 全華科技圖書股份有限公司.
2.Feduska, W. and A.O. Isenberg, High-temperature solid oxide fuel cell - technical status. Journal of Power Sources, 1983. 10(1): p. 89-102.
3.Yamamura, Y., S. Kawasaki, and H. Sakai, Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia. Solid State Ionics, 1999. 126(1): p. 181-189.
4.Smeacetto, F., Salvo, M., Ferraris, M., Cho, J., Boccaccini, A. R., Glass-ceramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs. Journal of the European Ceramic Society, 2008. 28(1): p. 61-68.
5.Tai, L.W., Nasrallah, M. M., Anderson, H. U., Sparlin, D. M., Sehlin, S. R., Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics, 1995. 76(3-4): p. 259-271.
6.Petric, A., P. Huang, and F. Tietz, Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2000. 135(1-4): p. 719-725.
7.Ivers-Tiff'ee, E., A. Weber, and D. Herbstritt, Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1805-1811.
8.Wincewicz, K.C. and J.S. Cooper, Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005. 140(2): p. 280-296.
9.Yasuda, I., Ogasawara, K., Hishinuma, M., Kawada, T., Dokiya, M., Oxygen tracer diffusion coefficient of (La, Sr)MnO3-δ. Solid State Ionics, 1996. 86-88(PART 2): p. 1197-1201.
10.Zhao, F., R. Peng, and C. Xia, LSC-based electrode with high durability for IT-SOFCs. Fuel Cells Bulletin, 2008. 2008(2): p. 12-16.
11.Kostogloudis, G.C. and C. Ftikos, Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides. Solid State Ionics, 1999. 126(1): p. 143-151.
12.Virkar, A.V., Chen, J., Tanner, C. W., Kim, J. W., The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000. 131(1): p. 189-198.
13.Kaka, S., A. Pramuanjaroenkij, and X.Y. Zhou, A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007. 32(7): p. 761-786.
14.Horita, T., Yamaji, K., Sakai, N., Xiong, Y., Kato, T., Yokokawa, H., Kawada, T., Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. Journal of Power Sources, 2002. 106(1-2): p. 224-230.
15.S.Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma. An Introduction to Electrospinning and Manofibers. World Scientific.
16.Xing, X., Y. Wang, and B. Li, Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Optics Express, 2008. 16(14): p. 10815-10822.
17.Ondarcçuhu, T. and C. Joachim, Drawing a single nanofibre over hundreds of microns. Europhysics Letters, 1998. 42(2): p. 215-220.
18.Ma, P.X. and R. Zhang, Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 1999. 46(1): p. 60-72.
19.Hulteen, J.C., A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry, 1997. 7(7): p. 1075-1087.
20.吳大誠,杜仲良,高緖珊.奈米纖維. 2004. 五南圖書出版公司.
21.A. Formhals, US Patent 1934,1-975-504
22.Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995. 35(2-3): p. 151-160.
23.Taylor, G., Disintegration of water drops in an electric field. The Royal Society, 1964. 280(1382): p. 383-397.
24.Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., Ramkumar, S. S., Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005. 96(2): p. 557-569.
25.Deitzel, J.M., Kleinmeyer, J., Harris, D., Beck Tan, N. C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272.
26.Buchko, C.J., Chen, L. C., Shen, Y., Martin, D. C., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40(26): p. 7397-7407.
27.Rutledge., G.C., Y. Li., S. Fridrikh., S.B. Warner., V.E. Kalayci., P. Patra., Electrostatic Spinning and Properties of Ultrafine Fibers National Textile Center Annual Report, Project M98-D01, 2000: p. 1-10.
28.Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B.Prinz. 燃料電池基礎. 全華圖書股份有限公司
29.Adler, S.B., Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics, 2000. 135(1-4): p. 603-612.
30.Allen J. Bard, Larry R. Faulkner. Electrochemical Methodes Fundamentals and Applications. JOHN WILEY & SONS, INC.
31.田福助編著,電化學理論與應用, 高立圖書有限公司.
32.胡啟章,電化學原理與方法,五南圖書出版公司.
33.Shao, C., Guan, H., Liu, Y., Gong, J., Yu, N., Yang, X., A novel method for making ZrO2 nanofibres via an electrospinning technique. Journal of Crystal Growth, 2004. 267(1-2): p. 380-384.
34.Huang, Z.M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
35.Azad, A.M., T. Matthews, and J. Swary, Processing and characterization of electrospun Y2O3-stabilized ZrO2 (YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005. 123(3): p. 252-258.
36.Chen, J., Liang, F., Liu, L., Jiang, S., Chi, B., Pu, J., Li, J., Nano-structured (La, Sr)(Co, Fe)O3 + YSZ composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2008. 183(2): p. 586-589.
37.Ni, M., M.K.H. Leung, and D.Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 2007. 168(2): p. 369-378.
38.Azad, A.M., Fabrication of yttria-stabilized zirconia nanofibers by electrospinning. Materials Letters, 2006. 60(1): p. 67-72.
39.C.C.Liu, C.C.Chou, Fabrication and Characterization of SOFC Anode with Ni-8YSZ Nanofiber by Impregnation Methode.2007.
40.van Berkel, F.P.F., F.H. van Heuveln, and J.P.P. Huijsmans, Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I-V characteristics. Solid State Ionics, 1994. 72(PART 2): p. 240-247.
41.Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.
42.Zhao, S., Wu, X., Wang, L., Huang, Y., Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 2004. 91(1): p. 242-246.
43.Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
44.Demir, M.M., Yilgor, I., Yilgor, E., Erman, B., Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309.
45.Koski, A., K. Yim, and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 2004. 58(3-4): p. 493-497.
46.Koombhongse, S., W. Liu, and D.H. Reneker, Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science, Part B: Polymer Physics, 2001. 39(21): p. 2598-2606.
47.Cui, Q., Dong, X., Wang, J., Li, M., Direct fabrication of cerium oxide hollow nanofibers by electrospinning. Journal of Rare Earths, 2008. 26(5): p. 664-669.
48.Li, J.Y., Tan, Y., Xu, F. M., Sun, Y., Cao, X. Q., Zhang, Y. F., Hollow fibers of yttria-stabilized zirconia (8YSZ) prepared by calcination of electrospun composite fibers. Materials Letters, 2008. 62(16): p. 2396-2399.
49.Li, J.Y., Dai, H., Li, Q., Zhong, X. H., Ma, X. F., Meng, J., Cao, X. Q., Lanthanum zirconate nanofibers with high sintering-resistance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006. 133(1-3): p. 209-212.
50.Kenney, B. and K. Karan, Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis. Solid State Ionics, 2007. 178(3-4): p. 297-306.
51.Adler, S.B., Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004. 104(10): p. 4791-4843.
52.Jørgensen, M.J., Primdahl, S., Bagger, C., Mogensen, M., Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes. Solid State Ionics, 2001. 139(1-2): p. 1-11.
53.Xiangling, Y., Liu Lin, Zhang Min, Yang Min, Dong Yonglai, Cheng Mojie, Scandium-Doped La0.8Sr0.2Mn03.6 Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells. Chinese Journal of Catalysis, 2009. 30(2): p. 95-103.
54.Muranaka, M., Sasaki, K., Suzuki, A., Terai, T., LSCF-Ag cermet cathode for intermediate temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2009. 156(6): p. B743-B747.

QR CODE