簡易檢索 / 詳目顯示

研究生: 李羿慧
Yi-Hui Lee
論文名稱: 面滾式直傘齒輪齒面數學模式之研究
A STUDY ON THE MATHEMATICAL MODEL OF THE FACE-HOBBED STRAIGHT BEVEL GEAR
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 蔡高岳
Kao-Yueh Tsai
郭進星
Chin-Hsing Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 113
中文關鍵詞: 直傘齒輪面滾式切製法內擺線直線機構齒面相對修形齒面接觸分析齒面拓樸量測
外文關鍵詞: Straight bevel gears, face-hobbing method, hypocycloidal straight mechanism, ease-off topography, tooth contact analysis (TCA), flank topographic measurement
相關次數: 點閱:240下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今的面滾式切製法為螺旋傘齒輪和戟齒輪的主要製造方法之一,此方法採連續分度雙齒面切削,因此加工速度快,且製造之齒形具有高精度與較佳的齒面接觸性能等優點,然而其齒線為延伸外擺線,無法直接運用於直傘齒輪的加工。本論文利用內擺線運動中特殊的直線運動機構,亦即當滾動圓半徑等於基圓半徑的一半時,其運動軌跡會退化為直線,透過泛用型搖台式切齒機之坐標系統,推導面滾式直傘齒輪齒面數學模式,包含三個模組,分別為面滾式刀盤、平面假想產形輪,以及工件齒輪與平面假想產形輪之間的相對運動。對推導出的面滾式直傘齒輪齒面數學模式,進行齒頂變尖檢查與齒底過切分析,以及對面滾式直傘齒輪對進行齒面相對修形拓樸與齒面接觸分析,觀察其齒面接觸的情形與性能,接著說明使用齒輪專用量測機進行傘齒輪齒面拓樸量測之流程,並產生量測所需之齒面量測點資料,最後提出一數值範例說明並驗證本論文推導之面滾式直傘齒輪齒面數學模式之正確性,以及利用市售直傘齒輪齒面拓樸量測實驗驗證本論文產生之齒面量測點資料的可用性。


The face-hobbing method is one of the leading methods for manufacturing spiral gears and hypoid gears. Because it is a continuous-indexing and double flank cutting process, it supports high productivity, precision, and cutting gears with better contact bearing. Since this method generates extended epicycloidal flanks of bevel gears, so it is not suitable for cutting straight bevel gears. In this thesis, a special straight line mechanism of hypocycloidal motion is utilized to fabricate straight bevel gears by setting the radius of a rolling circle equals to half of the radius of a base circle. The mathematical model of a straight bevel gear is developed based on a universal face-hobbing bevel gear generator. This model contains three modules: a face-hobbed cutter, an imaginary generating gear, and the relative motion between an imaginary generating gear and the work gear. The tooth tapering and undercutting conditions of the face-hobbed straight bevel gear are checked, and the contact conditions of the designed gear pairs are investigated by ease-off topography, as well as the TCA.
In the thesis, the operating procedure for the tooth topographic measurement of bevel gears by gear measuring center is interpreted, and the nominal data are also generated. A numerical example of the face-hobbed straight bevel gears without a cutter tilt, in the essay, is presented to validate the proposed mathematical model, and then the experiment for measuring straight bevel gears is implemented to validate the nominal data.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號索引 VIII 圖索引 XII 表索引 XIV 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 5 第 2 章 面滾式直傘齒輪齒面數學模式 6 2.1 前言 6 2.2 直傘齒輪齒胚設計 6 2.2.1 面滾式直傘齒輪對齒胚設計 9 2.2.2 平面假想產形輪齒胚設計 11 2.2.3 齒面寬設計 13 2.3 內擺線之直線運動 14 2.4 面滾式刀盤數學模式 15 2.5 平面假想產形輪數學模式 19 2.5.1 標準平面假想產形輪 20 2.5.2 面滾式平面假想產形輪 22 2.6 面滾式直傘齒輪數學模式 24 2.7 面滾式直傘齒輪齒頂變尖檢查與齒底過切分析 28 2.8 小結 30 第 3 章 齒面相對修形拓樸與齒面接觸分析 32 3.1 前言 32 3.2 面滾式直傘齒輪齒面相對修形 32 3.3 面滾式直傘齒輪對齒面接觸分析 35 3.4 小結 38 第 4 章 傘齒輪齒面拓樸量測 39 4.1 前言 39 4.2 齒輪量測專用機 39 4.3 齒面量測點資料 40 4.3.1. 檔案MESINFO.CDS 41 4.3.2. 檔案SOLL1.CDS 42 4.3.3. 檔案ACTU1.CDS 45 4.4 傘齒輪齒面拓樸量測操作流程 47 4.5 小結 53 第 5 章 數值範例 54 5.1 前言 54 5.2 面滾式直傘齒輪數值範例 54 5.3 面滾式直傘齒輪齒面相對修形與齒面接觸分析之結果 65 5.4 面滾式直傘齒輪齒面拓樸量測數值範例 67 5.5 市售直傘齒輪齒面拓樸量測實驗 74 5.6 小結 83 第 6 章 結論與建議 85 6.1 結果與討論 85 6.2 建議與未來展望 86 參考文獻 88 附錄 A. 節圓直徑估算表I 91 附錄 B. 節圓直徑估算表II 92 附錄 C. MESINFO.CDS 93 附錄 D. SOLL1.CDS(小齒輪) 93 附錄 E. SOLL1.CDS(大齒輪) 94 附錄 F. ACTU1.CDS(小齒輪) 95 附錄 G. ACTU1.CDS(大齒輪) 95 附錄 H. P40輸出之市售小齒輪量測資料 96 附錄 I. P40輸出之市售小齒輪齒面拓樸量測報表 96 附錄 J. P40輸出之市售大齒輪量測資料 96 附錄 K. P40輸出之市售大齒輪齒面拓樸量測報表 96 作者簡介 97 授權書 98

[1] Stadtfeld, H. J., “Straight Bevel Gear Cutting and Grinding on CNC Free Form Machines,” Fall Technical Meeting of the American Gear Manufactures Association 2007, Detroit, USA, pp. 172-183 (2007).
[2] Stadtfeld, H. J., “Straight Bevel Gears on PhoenixR Machine Using ConiflexR Tools”, The Gleason Works, Rochester, NY, USA (2007).
[3] Hunecke, C., “The Road Leads Straight to HypoflexR”, Klingelnberg Sigma Report No. 18 (2009).
[4] ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA , USA (2008).
[5] 董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京 (2002)。
[6] Townsend, D. P., Dudley's Gear Handbook, 2nd Edition, McGraw-Hill, NY, USA (1992).
[7] 沈頌文,齒輪的設計與製造,徐氏基金會出版,台北 (1998)。
[8] Ozel, C., İnan, A., Ozler, L., “An Investigation on Manufacturing of the Straight Bevel Gear Using End Mill by CNC Milling Machine,” Journal of Manufacturing Science and Engineering, Vol. 127, No. 3, pp. 503-511 (2005).
[9] 石伊蓓,「直傘齒輪製造方法介紹」,機械月刊,第三十六卷,第六期,第84-101頁 (2010)。
[10] Tasi, Y. C., and Chin, P. C., “Surface Geometry of Straight and Spiral Bevel Gears,” Transactions of ASME, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 4, pp. 443-449 (1987).
[11] Shunmugam, M. S., Rao, B. S., and Jayaprakash, V., “Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II – Bevel Gears,” Mechanism and Machine Theory, Vol. 33, No. 5, pp. 525-534 (1998).
[12] Al-Daccak, M. L., Angeles, J., and Gonzalez-Palacios, M. A., “The Modeling of Bevel Gears Using the Exact Spherical Involute,” Transactions of ASME, Journal of Mechanical Design, Vol. 116, No. 2, pp.364-368 (1994).
[13] Chang, C. K., and Tsay, C. B., “Mathematical Model of Straight Bevel Gears with Octoid Form,” Journal of the Chinese Society of Mechanical Engineers, Vol. 21, No. 3, pp. 239-245 (2000).
[14] Chang, C. K., Tsay, C. B., “Characteristics of Profile-Shifted Straight Bevel Gears with Octoid Form,” Proceedings of the ASME Design Engineering Technical Conference, Chicago, IL, USA, Vol. 4B, pp. 895-901 (2003).
[15] Ichino, K., Tamura, H., and Kawasaki, K., “Method for Cutting Straight Bevel Gears Using Quasi-Complementary Crown Gears,” ASME Proceedings of the Seventh International Power Transmission and Gearing Conference, San Diego, CA, USA , pp. 283-288 (1996).
[16] Fuentes, A., Iserte, J. L., Gonzalez-Perez, I., and Sanchez-Marin, F. T., “Computerized Design of Advanced Straight and Skew Bevel Gears Produced by Precision Forging,” Computer Methods in Applied Mechanics and Engineering, Vol. 200, pp. 2363-2377 (2011).
[17] Jiao, J., and Cao, X., “Generation and TCA of Straight Bevel Gear Drive with Modified Geometry,” Applied Mechanics and Materials, Vol. 86, pp. 403-406 (2011).
[18] Litvin, F. L., Chaing, W. S., Kuan, C., Lundy, M., and Tsung, W. J., “Generation and Geometry of Hypoid Gear-Member with Face-Hobbed Teeth of Uniform Depth,” International Journal of Machine Tools and Manufacture, Vol. 31, No. 2, pp. 167-181 (1991).
[19] Shih, Y. P., Fong, Z. H., and Lin, C. Y., “Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator,” Transactions of ASME, Journal of Mechanical Design, Vol. 129, No. 1, pp. 38-47 (2007).
[20] Litvin, F. L., and Fuentes A., Gear Geometry and Applied Theory, 2nd Edition, Cambridge University Press, Cambridge, UK (2004).
[21] Shih, Y. P., and Fong, Z. H., “Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” Transactions of ASME, Journal of Mechanical Design, Vol. 129, No. 12, pp. 1294-1302 (2007).
[22] Klingelnberg, P40 Operating Instructions, Bevel Gear Software, Version 03-000en.
[23] Gleason Works, Straight Bevel Gear Design, No. SD3004E, Rochester, NY, USA (1972).
[24] Stadtfeld, H. J., Handbook of Bevel and Hypoid Gears, The Gleason Works, Rochester, NY, USA (1993).
[25] http://www.zeiss.com/4125682000247242/Contents-Frame/d25973055999e9e58625742800648e11.

QR CODE