簡易檢索 / 詳目顯示

研究生: 謝旻霖
Min-Lin Xie
論文名稱: 石灰石煅燒黏土複合膠結砂漿之抗壓強度與碳化研究
Study of Compressive Strengths and Carbonation of Limestone Calcined Clay Composite Cementitious Mortar
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
王韡蒨
Wei-Chien Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 159
中文關鍵詞: LC3膠結材高嶺土石灰石抗壓強度碳化
外文關鍵詞: limestone calcined clay cement (LC3), kaolinite, limestone, compressive strength, carbonation
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石灰石煅燒黏土複合膠結材(LC3, Limestone Calcined Clay Cement)為高嶺土、石灰石與水泥熟料之三元水泥基膠結材。相對於卜特蘭水泥,LC3膠結材使用較少的水泥熟料,因此降低製程的能耗與排碳,然而國內對於其配比組成、膠結性能與耐久性質等甚少相關研究,有待進一步探討。有鑑於此,本研究探討LC3的配比組成與其抗壓強度、抗碳化能力的關係。試驗變數包括高嶺土的煅燒溫度與時間、熟料來源、高嶺土來源、水灰比、養護方式及粒料比例。過程中,分別以體積及重量比配製煅燒高嶺土:石灰石=1:0、0:1、1:2、3:2、2:1之混合粉末,再與熟料以1:1、1:2、1:3與1:4混合製造出LC3。試驗結果發現,高嶺土的最佳煅燒溫度為550 °C、最佳煅燒時間為4小時、不同來源的熟料與高嶺土並未明顯影響其抗壓強度、於水灰比為0.5可得最高抗壓強度、砂漿中粒料比例越高,則強度越低,採用飽和石灰水養護可獲得較高的強度,使用LC3則增加碳化深度。


The limestone calcined clay cement (LC3) is a tenary cementitious material containing kaolinite, limestone, and cement clinker. In contrast to Portland cement, the LC3 uses less cement clinkers, thereby reducing the energy required during the manufacturing process and the release of the carbon dioxide. Howerver, there is few domestic researches on its compositions, cementitious properties and durability. In view of this issue, this study explores the relationship among its compositions and the compressive strength and the carbonation resistance. The experimental parameters include the calcining temperature of the kaolinite, calcining time, source of the cement clinker, source of the kaolinite, water-to-cement ratio, curing method, and the aggregate ratio. During the study, the LC3 was produced by preparing and calcining the mixing powder at volume or weight ratios (w/c) of kaolinite:limestone=1:0、0:1、1:2、3:2、2:1 and mixing of the calcined power and the cement clinker at 1:1, 1:2, 1:3, and 1:4. Results showed that the optimum calcing temperature and time of the kaolinite was 550 °C and 4 hours, respectively. The cement clinkers and the kaolinite from different sources did not greatly change the compressive strength. The highest compressive strength was obtained in the specimens with w/c of 0.5. The strength was reduced by the aggregate ratios. A higher strength was obtained through the saturated lime water curing. The specimens with the LC3 had higher carbonation depth than those with Portland cement.

摘要 i Abstract iii 致謝 v 目錄 vii 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 卜特蘭水泥 5 2.1.1 製造 5 2.1.2 水化機理 6 2.1.3 強度發展 8 2.1.4 耐久性質 9 2.2 高嶺土 11 2.3 石灰石煅燒黏土膠結材(LC3) 12 2.3.1 製造 13 2.3.2 水化機理 13 2.3.3 強度發展 14 2.3.4 耐久性質 15 第三章 試驗規劃 23 3.1 試驗材料與設備 23 3.1.1 試驗材料 23 3.1.2 試驗設備 25 3.2 試驗內容以及變數 27 3.2.1 試驗變數 28 3.2.2 編碼說明 30 3.3 配比設計 31 3.3.1 重量取代 31 3.3.2 體積取代 31 3.4 LC3膠結材製作與拌合 31 3.5 基本性質試驗 32 3.5.1 比重 32 3.5.2 粒徑分析試驗 34 3.5.3 X–ray Fluorescence (XRF)成分分析 34 3.6 新拌性質試驗 35 3.6.1 坍流度試驗 35 3.6.2 凝結時間 35 3.7 抗壓強度試驗 36 3.8 單向碳化試驗 36 3.9 微觀分析 37 3.9.1 X光繞射分析 38 3.9.2 掃描式電子顯微鏡觀察 39 3.9.3 核磁共振(Nuclear Magnetic Resonance,NMR) 39 第四章 試驗結果與分析 63 4.1 基本性質 63 4.1.1 高嶺土煅燒時間與溫度 63 4.1.2 粒徑分析 63 4.2 新拌性質 65 4.2.1 坍流度 65 4.2.2 凝結時間 66 4.3 抗壓強度 68 4.3.1 重量取代配比 68 4.3.2 體積取代配比 72 4.3.3 高嶺土煅燒溫度 77 4.3.4 高嶺土煅燒時間 78 4.3.5 水泥熟料來源 78 4.3.6 高嶺土來源 79 4.3.7 養護方式 79 4.3.8 粒料比例 79 4.3.9 水灰比 80 4.4 吸水率與抗壓強度間的關係 80 4.5 單向碳化試驗 82 4.6 X光繞射分析 84 4.7 SEM微觀分析 85 4.8 NMR微觀分析 86 4.9 LC3膠結材成本分析 86 第五章 結論與建議 125 5.1 結論 125 5.1.1 煅燒溫度與煅燒時間對抗壓強度之關係 125 5.1.2 新拌性質 125 5.1.3 抗壓強度 126 5.1.4 LC3膠結材抗碳化能力 126 5.2 建議 127 參考文獻 129 附錄A 135 附錄B 137

[1]. LC3 Project Office, about LC3. (2021). https://lc3.ch/about-lc3/.access date:2022/06/28
[2]. Antoni, M. (2013). Investigation of cement substitution by blends of calcined clays and limestone.Lausanne. École polytechnique fédérale de Lausanne.
[3]. Antoni, M., Rossen, J., Martirena, F., and Scrivener, K. (2012). Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, 42(12), 1579-1589.
[4]. Batis, G., Pantazopoulou, P., Tsivilis, S., and Badogiannis, E. (2005). The effect of metakaolin on the corrosion behavior of cement mortars. Cement and Concrete Composites. 27(1): 125-130.
[5]. Benhelal, E., Shamsaei, E., and Rashid, M. I. (2021). Challenges against CO2 abatement strategies in cement industry: A review.Journal of Environmental Sciences.104, 84-101.
[6]. Bentz, D. P., Sant, G., and Weiss, J. (2008). Early-age properties of cement-based materials. I: Influence of cement fineness. Journal of Materials In Civil Engineering. 20(7): 502-508.
[7]. Bonen, D., and Sarkar, S. L. (1995). The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials. Journal of Hazardous Materials. 40(3): 321-335.
[8]. Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., Scrivener, K. L., and Thomas, J. J. (2011). Mechanisms of cement hydration. Cement and Concrete Research. 41(12): 1208-1223.
[9]. Bye, G. C. (1999). Portland cement: composition, production and properties. Thomas Telford. Pergamon Press. Oxford.
[10]. Cui, H., Tang, W., Liu, W., Dong, Z., and Xing, F. (2015). Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Construction and Building Materials. 93: 522-527.
[11]. Dhandapani, Y., Sakthivel, T., Santhanam, M., Gettu, R., and Pillai, R. G. (2018). Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cement and Concrete Research. 107: 136-151.
[12]. Drouet, E., Poyet, S., Le Bescop, P., Torrenti, J.-M., and Bourbon, X. (2019). Carbonation of hardened cement pastes: Influence of temperature. Cement and Concrete Research. 115: 445-459.
[13]. Elsalamawy, M., Mohamed, A. R., and Kamal, E. M. (2019). The role of relative humidity and cement type on carbonation resistance of Concrete. Alexandria Engineering Journal. 58(4): 1257-1264.
[14]. Hartmann, A., Khakhutov, M., and Buhl, J. C. (2014). Hydrothermal synthesis of CSH-phases (tobermorite) under influence of Ca-formate. Materials Research Bulletin. 51: 389-396.
[15]. Hewlett, P., and Liska, M. (2019). Lea's chemistry of cement and concrete. Butterworth-Heinemann. Elsevier. Oxford.
[16]. Hollanders, S., Adriaens, R., Skibsted, J., Cizer, Ö., and Elsen, J. (2016). Pozzolanic reactivity of pure calcined clays. Applied Clay Science. 132-133, 552-560.
[17]. Hu, C., and Li, Z. (2015). Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cement and Concrete Composites. 57: 17-26.
[18]. Jerga, J. (2004). Physico-mechanical properties of carbonated concrete. Construction and Building Materials. 18(9): 645-652.
[19]. Kendall, K., Howard, A., and Birchall, J. D. (1983). The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 310(1511): 139-153.
[20]. Khan, M., Nguyen, Q., and Castel, A. (2018). Carbonation of limestone calcined clay cement concrete. In Calcined Clays for Sustainable Concrete Springer. Berlin.238-243.
[21]. Khatib, J. M., Baalbaki, O., and ElKordi, A. A. (2018). Metakaolin. In Waste and supplementary cementitious materials in concrete. Elsevier. 493-511.
[22]. Kim, H.-S., Lee, S.H., and Moon, H.Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and Building Materials. 21(6): 1229-1237.
[23]. Kiran Pulidindi, S. M. (2017). Kaolin Market Size by Application (Paper, Ceramics, Paints and Adhesives, Fiberglass, Rubber, Plastics, Cement), Metakaolin Market by Application (Concrete, Mortar), Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share and Forecast, 2016 – 2024. Global Market Insights. USA.
[24]. Krishnan, S., Kanaujia, S. K., Mithia, S., and Bishnoi, S. (2018). Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay. Construction and Building Materials. 164: 265-274.
[25]. Lafhaj, Z., Goueygou, M., Djerbi, A., and Kaczmarek, M. (2006). Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cement and Concrete Research. 36(4): 625-633.
[26]. Müller, N., and Harnisch, J. (2008). How to Turn Around the Trend of Cement Related Emissions in the Developing World. World Wildlife Fund. Switzerland.
[27]. Verbeck, G. (1958). Carbonation of hydrated Portland cement. ASTM International West Conshohocken, Pennsylvania, USA.
[28]. Mindess, S. (1981). Concrete. Prentice Hall. New Jersey,USA.
[29]. Mindess, S., Young, F., and Darwin, D. (2003b). Concrete 2nd editio. Prentice Hall. New Jersey.USA.585.
[30]. Mohammed, A. and A. Abdullah (2018). Scanning electron microscopy (SEM). Springer, New York.1: 1-40
[31]. Qian, X., Wang, J., Wang, L., and Fang, Y. (2019). Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles. Construction and Building Materials. 196: 681-691.
[32]. Quennoz, A., and Scrivener, K., L. (2012). Hydration of C3A–gypsum systems. Cement and Concrete Research. 42(7): 1032-1041.
[33]. Rodriguez, C., & Tobon, J. I. (2020). Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Construction and Building Materials, 251, 119050.
[34]. Röβler, M., and Odler, I. (1985). Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cement and Concrete Research. 15(2): 320-330.
[35]. Ruan, Y., Jamil, T., Hu, C., Gautam, B. P., and Yu, J. (2022). Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder. Construction and Building Materials, 314: 125-416.
[36]. Sabir, B., Wild, S., and Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites. 23(6): 441-454.
[37]. Scrivener, K., Avet, F., Maraghechi, H., Zunino, F., Ston, J., Hanpongpun, W., and Favier, A. (2018). Impacting factors and properties of limestone calcined clay cements (LC3). Green Materials. 7(1): 3-14.
[38]. Scrivener, K. L., John, V. M., and Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research. 114: 2-26.
[39]. Schneider, H., Schreuer, J., and Hildmann, B. (2008). Structure and properties of mullite—a review.Journal of the European Ceramic Society.28(2): 329-344.
[40]. Shah, V., Parashar, A., and Scott, A. (2022). Understanding the importance of carbonates on the performance of Portland metakaolin cement. Construction and Building Materials. 319: 126-155.
[41]. Sharma, M., Bishnoi, S., Martirena, F., and Scrivener, K. (2021). Limestone calcined clay cement and concrete: A state-of-the-art review. Cement and Concrete Research. 149: 106-564.
[42]. Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S., and Skibsted, J. (2016). Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research. 88: 60-72.
[43]. Stafford, F, N,. Dias, A., C., Arroja, L., Labrincha, J. A,. and Hotza. D. (2016). Life cycle assessment of the production of Portland cement: a Southern Europe case study. Journal of Cleaner Production. 126: 159-165.
[44]. Tang, J., Wei, S., Li, W., Ma, S., Ji, P., and Shen, X. (2019). Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement. Construction and Building Materials. 223: 177-184.
[45]. Thiery, M., Villain, G., Dangla, P., and Platret, G. (2007). Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cement and Concrete Research. 37(7): 1047-1058.
[46]. Uwasu, M., Hara, K., and Yabar, H. (2014). World cement production and environmental implications. Environmental Development. 10: 36-47.
[47]. Watson, K. (1981). A simple relationship between the compressive strength and porosity of hydrated portland cement. Cement and Concrete Research. 11(3): 473-476.
[48]. Warren, B. E. (1990). X-ray Diffraction, .USA. Dover Publications. 1
[49]. Walkley, B., & Provis, J. L. (2019). Solid-state nuclear magnetic resonance spectroscopy of cements. Materials Today Advances, 1.
[50]. Zunino, F,. and Scrivener. K. (2020). Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials. Construction and Building Materials. 244: 118-335.
[51]. Zunino, F., and Scrivener, K. (2021). The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cement and Concrete Research. 140: 106-307.
[52]. CNS 5090 A3089土壤比重試驗法. 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[53]. CNS 11272 R3122水硬性水泥密度試驗法. 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[54]. CNS 3655 R2079水硬性水泥可塑稠性水泥漿及墁料之機械拌合法. . 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[55]. CNS 1010 R3032水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體) . 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[56]. CNS 785 R3021水硬性水泥凝結時間檢驗法(費開式針法) . 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[57]. CNS 1230 3043試驗室混凝土試體製作與養護法. 中華民國國家標準. 經濟部標準檢驗局. 台北市.
[58]. 林昌緯. (2012). 添加強塑劑下石灰石水泥漿體之流變行為研究. 營建工程所. 國立台灣科技大學.
[59]. 王櫻茂. (2000). 混凝土構造物的耐久性系列鹼.骨材反應(Ⅰ)、碳化(Ⅱ). 台南市. 復文書局.
[60]. 黃兆龍. (2007). 卜作嵐混凝土使用手冊. 臺北市. 科技圖書.
[61]. 饒瑞榆. (2017). 高嶺土粉介紹. 極光應用材料有限公司. 台南市.
[62]. (2022). 氣候月平均(相對濕度,溫度). 台北市. 中央氣象局. https://www.cwb.gov.tw/V8/C/C/Statistics/monthlymean.html.access date:2022/07/28.

無法下載圖示 全文公開日期 2027/09/29 (校內網路)
全文公開日期 2027/09/29 (校外網路)
全文公開日期 2027/09/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE