簡易檢索 / 詳目顯示

研究生: 蔡豐陽
Feng-Yang Tsai
論文名稱: 介孔尺寸限制空間內雙金屬鎳銅奈米粒子於乙醇蒸氣重組之應用
Confined Synthesis of NiCu nanoparticles in mesoporous supports for ethanol steam reforming
指導教授: 蕭敬業
Ching-Yeh Shiau
黃炳照
Bing-Joe Hwang
口試委員: 翁鴻山
Hong-Shan Wong
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 151
中文關鍵詞: 疏水性膠囊化法介孔材料限制空間乙醇蒸氣重組反應SBA-15氧化鈰導氧離子材料
外文關鍵詞: hydrophobic encapsulation, mesoporous, SBA-15, confined space, steam reforming of ethanol reaction, Ni, Cu
相關次數: 點閱:224下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功地以改良式疏水性膠囊化合成方法將NiO奈米粒子合成於規則介孔SBA-15材料之限制空間內,其奈米粒子之尺寸不但與本實驗室先前所開發之疏水膠囊化(hydrophobic encapsulation)製程相當,並可將製程簡化,縮短製程時間。而所合成之奈米觸媒粒子亦較一般方式小,並均勻地分散於限制空間內且無阻塞的問題,即使於高負載量仍能維持此特性( NiO平均粒徑由1.54 nm(負載量為5 wt%)些微增加至2.51 nm(負載量20 wt%))。
上述方式合成之NiO/SBA15奈米複合材料對乙醇蒸氣重組反應(Steam reforming of ethanol reaction , SRE)有良好之產氫效率,當Ni的負載量為10 wt%時,有最佳的單位觸媒重量反應活性:以WHSV
=9.6 h-1,觸媒重量0.1 g的反應條件,於500 oC 下,乙醇轉化率可達100 %,H2選擇率為86.4 %,CO2選擇率為64.4;當Ni的負載量為20 wt%時,積碳的效應造成觸媒表面碳化,使觸媒活性面積下降,500 oC 下,H2選擇率為59.5 %,CO2選擇率為46.3 %。
為了探討添加第二金屬Cu在SRE反應中所產生的效應,並避免SBA-15可能之孔洞堵塞,本研究以Ni5/SBA15為基礎,製備不同Ni/Cu比例的雙金屬觸媒,發現Cu的添加會降低Ni的晶粒尺寸,提高其分散性,使Ni活性面積增加,當Ni與Cu的重量比為1:1時觸媒有最佳的活性(NiCu55/SBA-15),於500 oC 下,乙醇的轉化率可達100 %,H2的選擇率為71.8 %,CO2、CO、CH4選擇率分別為56.8 %、8.6 %、34 %;而Ni負載量5 wt%時(Ni5/SBA15),乙醇的轉化率為85.3 %,H2的選擇率為45 %,CO2、CO、CH4及CH3CHO選擇率分別為13.8 %、4 %、2.6 %、42.8 %,經碳平衡方程式計算後得知Cu有抑制積碳的效果(Ni5/SBA15積碳速率為1.14 (mol/unit time);NiCu55/SBA15積碳速率為0.192(mol/unit time))。
為了再提升觸媒產氫的效率及改善觸媒積碳的問題,本研究以能夠儲存與釋放晶格氧的導氧離子材料-CeO2來改質擔體(SBA-15),發現CeO2能有效地抑制積碳,促進甲烷蒸氣重組反應並利用其晶格氧將吸附在表面的CH4或CO氧化成CO2,其NiCu55/ CeO2-10/SBA15
(CeO2的含量為10 wt%)於600 oC下有最好的觸媒活性,其乙醇轉化率為100 %,H2選擇率為100 %,CO2、CO、CH4選擇率分別為61.4 %、24 %、5.8 %。


In this study, simple method for confined synthesis of NiO nanoparticles in the pore channels of SBA-15 has been developed by the modified hydrophobic encapsulation route. The developed route greatly shortens the process time which longer time is required for the hydrophobic encapsulation route. Further, the fact of blockage-free nature in the pore channels with the confined small NiO nanoparticles is almost identical to that obtained from the original hydrophobic encapsulation route.The formed NiO nanoparticles are highly uniform and well distributed in the confined space without blocking the pore channels until 20 wt% of Ni loading. The average grain size of NiO slightly increases from 1.54 nm (5 wt%) to 2.51 nm (20 wt%)).
After reduction, the synthesized NiO/SBA15 shows excellent ability to steam reforming of ethanol reaction (SRE) for hydrogen production. It shows that Ni10/SBA-15 possesses the best catalytic performance: with 0.1 g of Ni10/SBA-15 and 9.6 h-1 of WHSV, 100 % ethanol conversion is achieved at 500 oC with H2 selectivity of 86.4 % and CO2 selectivity of 46.3 %.
To further improve the hydrogen production efficiency, the role of Cu is studied with NiCu/SBA15 catalysts. To avoid the possible blockage, Ni5/SBA15 (5 wt% Ni) is employed for modification of Cu. It is found that incorporation of Cu improves the dispersity of Ni. It should be noticed that addition of Cu seems to weaken the interaction between Ni and SiO2. Among the NiCu/SBA-15 catalysts, NiCu55/SBA15 shows the best catalytic performance on SRE: with 0.1 g of NiCu55/SBA15 and 9.6 h-1 of WHSV, 100 % conversion of ethanol is achieved at 500 oC with 71.8 % of H2 selectivity, 56.8% of CO2 selectivity, 8.6% of CO selectivity and 34% of CH4 selectivity. Coking rate can also be hindered with addition of Cu. (Ni5/SBA15:1.14 mol C/unit time; NiCu55/SBA15: 0.192 mol C/unit time)
In order to promote the efficiency of hydrogen production and inhibitation of coke formation resistance, CeO2 is further incorporated since the lattice oxygen can be stored and released from CeO2. It is found that coking problem can be effectively solved by CeO2. SRE can be improved as well. With 10 wt% of CeO2 (NiCu55/ CeO2-10/ SBA15), the highest catalytic activity is shown. (100% conversion of ethanol at 600 oC, 100% of H2 selectivity, 61.4% of CO2, 24% of CO, 5.8% of CH4)

第一章 緒論 1 1.1 前言 1 1.2 氫氣發展史及獲得方式 2 1.3 乙醇製氫 6 1.4 研究動機與目的 7 第二章 文獻回顧 8 2.1 金屬觸媒 8 2.1.1 貴金屬觸媒 8 2.1.2 非貴金屬觸媒 9 2.1.3 金屬觸媒 11 2.2 氧化物擔體 15 2.2.1 一般氧化物擔體 15 2.2.2 多孔性分子篩擔體 16 2.2.3 中孔洞分子篩SBA-15 20 2.2.3.1 SBA-15 簡介 20 2.2.3.2 SBA-15的合成機制 20 2.2.3.3 界面活性劑與微胞性質之介紹 22 2.3 觸媒的製備方法 23 2.3.1 含浸法(Impregnation) 23 2.3.2 共沉澱法(Coprecipitation) 24 2.3.3 直接合成法(Direct synthesis) 24 2.3.4 溶膠凝膠法(Sol-gol) 25 2.3.5 疏水性膠囊化法(hydrophobic encapsulation) 30 2.4 乙醇蒸氣重組的反應機制 31 2.5 XRD分析原理 35 2.6 氮氣等溫吸/脫附儀 分析原理 38 2.6.1 氣體吸附理論 38 2.6.2 吸附等溫曲線(adsorption isotherm) 40 第三章 實驗步驟及方法 43 3.1 實驗背景 43 3.2 合成方法概念 43 3.3 實驗藥品、氣體及儀器設備 45 3.3.1 實驗藥品 45 3.3.2 實驗氣體 45 3.3.3 儀器設備 46 3.4 觸媒製備 47 3.4.1 SBA-15合成步驟 47 3.4.2 溶膠凝膠法製備Ni/SBA-15系列觸媒 49 3.4.3 溶膠凝膠法製備NiCu/SBA-15、NiCu/MOx/SBA-15觸媒 50 3.5 . 觸媒的特性鑑定 51 3.5.1 X光繞射分析(XRD) 52 3.5.2 氮氣等溫吸/脫附儀 (N2,Adsorption/Desorption;BET) 53 3.5.3 .掃描式電子顯微鏡(SEM) 54 3.5.4 穿透式電子顯微鏡(TEM) 55 3.5.5 程式升溫還原(TPR) 56 3.5.6 X射線光電子能譜(XPS)之鑑定 57 3.6 觸媒反應裝置與反應步驟 59 3.6.1 反應裝置 59 3.6.2 乙醇蒸氣重組反應條件 61 3.6.3 反應步驟 61 3.6.4 乙醇轉化率及各產物選擇率的計算 62 3.6.5 碳數平衡方程式(carbon balance equation) 63 第四章 結果與討論 64 4.1 Ni/SBA-15系列觸媒鑑定與活性分析 66 4.1.1 X-Ray 繞射分析(XRD) 66 4.1.2 小角度繞射分析(SAXS) 70 4.1.3 掃描式電子顯微鏡(SEM) 72 4.1.4 穿透式電子顯微鏡(TEM) 74 4.1.5 氮氣等溫吸/脫附儀(Nitrogen physisorption analysis ) 78 4.1.6 Ni/SBA15系列觸媒反應活性 83 4.2 NiCu/SBA-15系列觸媒鑑定與活性分析 90 4.2.1 XRD 90 4.2.2 電子能譜化學分析(ESCA,XPS) 91 4.2.3 掃描式電子顯微鏡(SEM) 94 4.2.4 穿透式電子顯微鏡(TEM) 95 4.2.5 氮氣等溫吸/脫附儀(Nitrogen physisorption analysis ) 97 4.2.6 程式升溫還原(TPR) 100 4.2.7 NiCu/SBA15系列觸媒反應活性 102 4.3 NiCu/MgO/SBA15、NiCu/CeO2/SBA15觸媒鑑定與活性分析 109 4.3.1 X-Ray 繞射分析(XRD) 109 4.3.2 掃描式電子顯微鏡(SEM) 112 4.3.3 穿透式電子顯微鏡(TEM) 113 4.3.4 NiCu/MgO/SBA15、NiCu/CeO2/SBA15系列觸媒反應活性 115 4.3.4.1 NiCu/MgO/SBA15系列觸媒 115 4.3.4.2 NiCu/CeO2/SBA15系列觸媒 122 4.4 觸媒之穩定度測試 126 4.5 觸媒經再活化後之活性測試 128 4.6 H2O/C2H5OH 之莫耳比對乙醇蒸氣重組反應的影響 129 第五章 綜合討論 131 5.1 Ni/SBA15系列觸媒進行乙醇蒸氣重組反應之反應途徑及比較 131 5.2 Cu的添加對Ni/SBA15觸媒在乙醇蒸氣重組反應中之影響 133 5.3 CeO2 的修飾在乙醇蒸氣重組反應中所產生的效應 135 5.4 乙醇蒸氣重組反應途徑隨溫度所產生之變化 139 5.5 積碳速率的比較 141 第六章 結論 143 Reference 146

1. 台北市燃料電池基金會.
[cited; Available from: http://idic.tier.org.tw/TFCF/chome.htm.
2. Fatsikostas, A.N., D.I. Kondarides, and X.E. Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 2002. 75(1-4): p. 145-155.
3. Vaidya, P.D. and A.E. Rodrigues, Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 2006. 117(1): p. 39-49.
4. Liguras, D.K., D.I. Kondarides, and X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 2003. 43(4): p. 345-354.
5. Cavallaro, S., Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis A: General, 2003. 249(1): p. 119-128.
6. Cavallaro, S., Ethanol Steam Reforming on Rh/Al2O3 Catalysts. Energy & Fuels, 2000. 14(6): p. 1195-1199.
7. Frusteri, F., H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 2004. 5(10): p. 611-615.
8. Sun, J., Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. International Journal of Hydrogen Energy, 2004. 29(10): p. 1075-1081.
9. Yang, Y., J. Ma, and F. Wu, Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 2006. 31(7): p. 877-882.
10. Frusteri, F., Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 2004. 270(1-2): p. 1-7.
11. Frusteri, F., Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. International Journal of Hydrogen Energy, 2006. 31(15): p. 2193-2199.
12. Akande, A., Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a co-precipitated Ni-Al2O3 catalyst in a packed bed tubular reactor. International Journal of Hydrogen Energy, 2006. 31(12): p. 1707-1715.
13. Aboudheir, A., Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 2006. 31(6): p. 752-761.
14. Batista, M.S., High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 2004. 134(1): p. 27-32.
15. Wang, J.-H., C.S. Lee, and M.C. Lin, Mechanism of Ethanol Reforming: Theoretical Foundations. The Journal of Physical Chemistry C, 2009. 113(16): p. 6681-6688.
16. Llorca, J., Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming. Journal of Catalysis, 2002. 209(2): p. 306-317.
17. Kaddouri, A. and C. Mazzocchia, A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming. Catalysis Communications, 2004. 5(6): p. 339-345.
18. Parizotto, N.V., Alumina-supported Ni catalysts modified with silver for the steam reforming of methane: Effect of Ag on the control of coke formation. Applied Catalysis A: General, 2007. 330: p. 12-22.
19. Kugai, J., Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol. Journal of Catalysis, 2006. 238(2): p. 430-440.
20. Bengaard, H.S., Steam Reforming and Graphite Formation on Ni Catalysts. Journal of Catalysis, 2002. 209(2): p. 365-384.
21. Fierro, V., et al., Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 2002. 75(1-4): p. 141-144.
22. Klouz, V., Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation. Journal of Power Sources, 2002. 105(1): p. 26-34.
23. Marino, F., Cu-Ni-K/[gamma]-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal-support interaction. Applied Catalysis A: General, 2003. 238(1): p. 41-54.
24. Marino, F., Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/[gamma]-Al2O3 catalysts. Effect of Ni. International Journal of Hydrogen Energy, 2001. 26(7): p. 665-668.
25. Marino, F., Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts. International Journal of Hydrogen Energy, 2004. 29(1): p. 67-71.
26. Marino, F.J., Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts. International Journal of Hydrogen Energy, 1998. 23(12): p. 1095-1101.
27. Velu, S., In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 2005. 55(4): p. 287-299.
28. Fierro, V., O. Akdim, and C. Mirodatos, On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 2003. 5(1): p. 20-24.
29. Fierro, V., Ethanol oxidative steam reforming over Ni-based catalysts. Journal of Power Sources, 2005. 145(2): p. 659-666.
30. Erdohelyi, A., Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 2006. 116(3): p. 367-376.
31. Diagne, C., Efficient hydrogen production by ethanol reforming over Rh catalysts. Effect of addition of Zr on CeO2 for the oxidation of CO to CO2. Comptes Rendus Chimie, 2004. 7(6-7): p. 617-622.
32. Fatsikostas AN, V.X., Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal, 2004. 225: p. 439–452.
33. Sun, J., H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy, 2005. 30(4): p. 437-445.
34. Comas, J., et al., Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 2004. 98(1-2): p. 61-68.
35. Akande, A.J., R.O. Idem, and A.K. Dalai, Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A: General, 2005. 287(2): p. 159-175.
36. Llorca, J., CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Applied Catalysis B: Environmental, 2003. 43(4): p. 355-369.
37. Llorca, J., Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 2004. 222(2): p. 470-480.
38. Llorca, J., Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chemical Communications, 2001(7): p. 641-642.
39. Deluga, G.A., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 2004. 303(5660): p. 993-997.
40. Karge, H.G., E.M.F. H. van Bekkum, and J.C. Jansen, Chapter 14 Coke Formation on Zeolites, in Studies in Surface Science and Catalysis. 1991, Elsevier. p. 531-570.
41. Beck, J.S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 2002. 114(27): p. 10834-10843.
42. Kresge, C.T., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359(6397): p. 710-712.
43. Zhao, D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998. 120(24): p. 6024-6036.
44. S. Inagaki, Y.F., and K. Kuroda, Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc., Chem. Commun, 1993. 8: p. 680 - 682.
45. Ryoo, R., Disordered Molecular Sieve with Branched Mesoporous Channel Network. The Journal of Physical Chemistry, 1996. 100(45): p. 17718-17721.
46. Bagshaw, S.A., E. Prouzet, and T.J. Pinnavaia, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995. 269(5228): p. 1242-1244.
47. Tanev, P.T. and T.J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 1995. 267(5199): p. 865-867.
48. Chen, C.-Y., H.-X. Li, and M.E. Davis, Studies on mesoporous materials : I. Synthesis and characterization of MCM-41. Microporous Materials, 1993. 2(1): p. 17-26.
49. Zana, R., Micellization of amphiphiles: selected aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997. 123-124: p. 27-35.
50. Yang, C.-M., Consecutive Generation of Mesopores and Micropores in SBA-15. Chemistry of Materials, 2003. 15(20): p. 3739-3741.
51. Wade, A.W., P. J, Handbook of Pharmaceutical Excipients. 2nd ed. 1994.
52. Vizcaino, A.J., A. Carrero, and J.A. Calles, Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. International Journal of Hydrogen Energy. 32(10-11): p. 1450-1461.
53. de Lima, S.M., H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catalysis Today, 2008. 138(3-4): p. 162-168.
54. Carrero, A., J.A. Calles, and A.J. Vizcaino, Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation. Applied Catalysis A: General, 2007. 327(1): p. 82-94.
55. Brinker, Sol-Gel Science,The Physics and Chemistry of Sol-Gel Preocessing. Academic Press Inc. 1990
56. Kakihana, M., Sol-Gel Preparation of High Temperature Supercomducting Oxides. J.Sol-Gel Sci.Tech, 1996. 6: p. 7.
57. Hench, L.L. and J.K. West, The sol-gel process. Chemical Reviews, 2002. 90(1): p. 33-72.
58. Kocjan, R., Silica gel modified with Zincon as a sorbent preconcentration or elimination of trece metals. Analyst, 1994. 199: p. 8.
59. Klein, L.M., Sol-Gel Technology for Thin Films,Fibers,Preforms,Electronics,and Specialty Shapes Noyes Publication, 1987.
60. Kung, Preparation of oxides catalysts and catalyst supports-a review of recent advances. The Chemical Engineering Journal, 1996. 64(2).
61. Alain C, P. and U. Donald R, Gelation of Aluminum Hydroxide Sols. Journal of the American Ceramic Society, 1987. 70(1): p. 28-32.
62. Kung, H.H. and E.I. Ko, Preparation of oxide catalysts and catalyst supports - A review of recent advances. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996. 64(2): p. 203-214.
63. Yoda, S., Effects of ethanolamines catalysts on properties and microstructures of silica aerogels. Journal of Non-Crystalline Solids, 1996. 208(1-2): p. 191-198.
64. Yoda, Effects of ethanolamines catalysts on properties and microstructures of silica aerogels. Journal of Non-Crystalline Solids, 1996. 208(191).
65. Pechini, Methed of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Mrthus Using the Same to Form a Capacitor. U.S. Pat., 1967. 3(330): p. 697.
66. Cheng, M.-Y., C.-J. Pan, and B.-J. Hwang, Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. Journal of Materials Chemistry, 2009. 19(29): p. 5193-5200.
67. Haryanto, A., Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy and Fuels, 2005. 19(5): p. 2098-2106.
68. Llorca J, H.N., Sales J, Fierro JL, Piscina PR, Effect of sodium
addition on the performance of Co–ZnO-based catalysts for hydrogen
production from bioethanol. J Catal, 2004. 222: p. 470–80.
69. Deluga, G.A.S., J. R.; Schmidt, L. D.; Verykios, X. E, Renewable Hydrogen from Ethanol by Autothermal Reforming. Science 2004. 303 (5660): p. 993-997.
70. Goula, M.A., S.K. Kontou, and P.E. Tsiakaras, Hydrogen production by ethanol steam reforming over a commercial Pd/[gamma]-Al2O3 catalyst. Applied Catalysis B: Environmental, 2004. 49(2): p. 135-144.
71. Therdthianwong, A., Sakulkoakiet, T., Therdthianwong, S., Hydrogen Production by Catalytic Ethanol Steam Reforming. ScienceAsia, 2001. 27: p. 193-198.
72. Llorca, J.d.l.P., P. R.; Sales, J.; Homs, N, Direct Production of Hydrogen from Ethanolic Aqueous Solutions over Oxide Catalysts. Chem. Commun, 2001: p. 641-642.
73. Sheng, P.Y., Idriss, H, Ethanol Reactions over Au-Rh/CeO2 Catalysts. Total Decomposition and H2 Formation. J. Vac. Sci. Technol. ,Advanced Materials, 2004,. 22 (4): p. 1652-1658.
74. Fatsikostas, A.N., D.I. Kondarides, and X.E. Verykios, Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chemical Communications, 2001(9): p. 851-852.
75. Zhao, S., T. Luo, and R.J. Gorte, Deactivation of the water-gas-shift activity of Pd/ceria by Mo. Journal of Catalysis, 2004. 221(2): p. 413-420.
76. Wang, F., Ethanol steam reforming over Ni and Ni-Cu catalysts. Catalysis Today, 2009. In Press, Corrected Proof.
77. Tu, C.-H., Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Applied Catalysis A: General, 2006. 297(1): p. 40-47.
78. Vizca, A.J., A. Carrero, and J.A. Calles, Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. International Journal of Hydrogen Energy, 2006. 32(10-11): p. 1450-1461.
79. Wei, Y.L., In-Situ Coating of SBA-15 with MgO: Direct Synthesis of Mesoporous Solid Bases from Strong Acidic Systems. Advanced Materials, 2003. 15(22): p. 1943-1945.
80. Sun, L.B., New Attempt at Directly Generating Superbasicity on Mesoporous Silica SBA-15. Inorganic Chemistry, 2008. 47(10): p. 4199-4208.
81. Vizcaino, A.J., A. Carrero, and J.A. Calles, Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. International Journal of Hydrogen Energy, 2007. 32(10-11): p. 1450-1461.
82. Takenaka, S., T. Shimizu, and K. Otsuka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. International Journal of Hydrogen Energy, 2004. 29(10): p. 1065-1073.
83. Fagen Wang, Y.L., Weijie Cai, Ensheng Zhan, Xiaoling Mu, Wenjie Shen, Ethanol steam reforming over Ni and Ni–Cu catalysts. Catalysis Today 2009.
84. Kumar, P. and R. Idem, A Comparative Study of Copper-Promoted Water Gas-Shift (WGS) Catalysts. Energy & Fuels, 2007. 21(2): p. 522-529.
85. Raich, B.A. and H.C. Foley, Ethanol dehydrogenation with a palladium membrane reactor: An alternative to wacker chemistry. Industrial and Engineering Chemistry Research, 1998. 37(10): p. 3888-3895.
86. Tu, Y.J. and Y.W. Chen, Effects of alkaline-earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation. Industrial and Engineering Chemistry Research, 1998. 37(7): p. 2618-2622.
87. Feio, L.S.F., The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane. Applied Catalysis A: General, 2007. 316(1): p. 107-116.
88. Fan, L. and K. Fujimoto, Reaction Mechanism of Methanol Synthesis from Carbon Dioxide and Hydrogen on Ceria-Supported Palladium Catalysts with SMSI Effect. Journal of Catalysis, 1997. 172(1): p. 238-242.
89. Alberton, A.L., M.M.V.M. Souza, and M. Schmal, Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catalysis Today, 2007. 123(1-4): p. 257-264.

QR CODE