簡易檢索 / 詳目顯示

研究生: 楊天賜
Tien-Tzu Yang
論文名稱: 施體與受體摻雜對氧化銦鎵鋅半導體薄膜特性之研究
The Effects of Donor and Acceptor Doping on the Properties of IGZO Thin Films
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
何清華
Ching-Hwa Ho
郭東昊
Dong-Hau Kuo
薛人愷
Ren-Kae Shiue
宋振銘
Jenn-Ming Song
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 溶膠凝膠法錫摻雜銻摻雜氧化銦鎵鋅
外文關鍵詞: Sn doping, Sb doping, p-type IGZO, defect mechanism
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract..........................................................................I Acknowledgments.................................................................III Table of Contents................................................................IV List of Figures.................................................................VII List of Tables...................................................................XI Chapter 1 Introduction............................................................1 1.1 Introduction.................................................................1 1.2 Background of the study......................................................2 1.2.1 The study to increase the mobility of a-IGZO...............................2 1.2.2 The study of n-type transfer to p-type of a-IGZO...........................3 Chapter 2 Literature review and base theory.......................................4 2.1 The classification of transparent conductive films...........................4 2.2 The indium gallium zinc oxide (IGZO).........................................5 2.2.1 The concept of transparent IGZO semiconductor..............................5 2.2.2 The best-record of single-crystal IGZO (SC-IGZO)...........................8 2.2.3 The best-record of amorphous IGZO (a-IGZI)................................10 2.3 Effect of elements doping on the characteristics of an a-IGZO...............13 2.3.1 Effect of molybdenum (Mo) doping on a-IGZO................................13 2.3.2 Effect of magnesium (Mg) doping on a-IGZO.................................15 2.3.3 Effect of europium (Eu) doping on a-IGZO..................................17 2.3.4 Effect of nitrogen (N) doping on a-IGZO...................................17 2.3.5 Effect of yttrium (Y) doping on a-IGZO....................................18 2.3.6 Effect of tin (Sn) doping on a-IGZO.......................................20 2.4 The study of the n-type converting to the p-type of a-IGZO..................22 2.4.1 p-type of IGZO ...........................................................22 2.4.1.1 p-type IGZO formed by element ratio adjustment..........................22 2.4.1.2 p-type IGZO formed by the substitution indium or gallium with calcium, magnesium, and copper…..................................................23 2.4.1.3 p-type IGZO formed with the addition of AlN.............................25 2.4.2 A comparative structure of ZnO similar to IGZO............................27 2.4.3 Others p-type metal oxide for TFTs .......................................28 Chapter 3 Materials and methods..................................................31 3.1 The raw materials used in this work.........................................31 3.2 Instruments.................................................................31 3.3 The steps of the experiment.................................................32 3.3.1 Ways to synthesize InGaZn1-xSnxO4 solutions and to prepare thin film......32 3.3.2 Ways to synthesize InGaZn1-xSbxO4 solutions and to prepare thin film......35 3.4 The characteristic of analytical instruments................................38 Chapter 4 Results and Discussion.................................................41 4.1 The various characteristics of InGaZn1-xSnxO4 thin-film.....................41 4.1.1 Identification of the structure by XRD....................................41 4.1.2 Analyses of surface morphology and element mapping by SEM.................42 4.1.3 Evaluation of chemical bonds using XPS....................................47 4.1.4 Electrical properties measured by Hall effect measurement.................51 4.1.5 Optical properties measured by UV-Visible spectrometry....................54 4.1.6 Summary...................................................................57 4.2 The various characteristics of InGaZn1-xSbxO4 thin-film.....................58 4.2.1 Identification of the structure by XRD....................................58 4.2.2 Analyses of surface morphology and element mapping by SEM.................59 4.2.3 Evaluation of chemical bonds using XPS....................................63 4.2.4 Electrical properties measured by Hall measurement........................66 4.2.5 Optical properties measured by UV-Visible spectrometry....................69 4.2.6 Summary...................................................................71 Chapter 5 Overall summary and outlook............................................72 5.1 Conclusions of the dissertation.............................................72 5.2 Outlook.....................................................................73 References.......................................................................75 Publications and Patents.........................................................78

    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-Film
    Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor, Science, 300 (2003) 1269-1272.
    [2] H. Hosono, Oxide Semiconductor TFTs, Japan Science, and Technology Agency,
    https://en.wikipedia.org/wiki/Indium_gallium_zinc_oxide.
    [3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-
    temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors, Nature, 432 (2004) 488-492.
    [4] H. Hosono, M. Yasukawa, H. Kawazoe, Novel Oxide Amorphous
    Semiconductors:Transparent Conducting Amorphous Oxides, Journal of Non-Crystalline Solids, 203 (1996) 334-344.
    [5] H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier
    transport, and device application, Journal of Non-Crystalline Solids, 352 (2006) 851-858.
    [6] E. Fortunato, P. Barquinha, R. Martins, Oxide Semiconductor Thin-Film
    Transistors: A Review of Recent Advances, Advanced Materials, 24 (2012) 2945-2986.
    [7] K. Nomura, K. Ohta H Fau-Ueda, T. Ueda K Fau-Kamiya, M. Kamiya T Fau-Hirano,
    H. Hirano M Fau - Hosono, H. Hosono, Thin-Film Transistor Fabricated in
    Single-Crystalline Transparent Oxide Semiconductor.
    [8] J. Sheng, T. Hong, H.-M. Lee, K. Kim, M. Sasase, J. Kim, H. Hosono, J.-S.
    Park, Amorphous IGZO TFT with High Mobility of ∼70 cm2/(V·s) via Vertical
    Dimension Control Using PEALD, ACS Applied Materials & Interfaces, 11 (2019)
    40300-40309.
    [9] S.-J. Liu, H.-W. Fang, J.-H. Hsieh, J.-Y. Juang, Physical Properties of Amorphous Mo Doped In–Ga–Zn–O Films Grown by Magnetron co-sputtering Technique, Materials Research Bulletin, 47 (2012) 1568-1571.
    [10] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, S.-Y. Liu, Effects of Mg Doping on the Gate
    Bias and Thermal Stability of Solution-Processed InGaZnO Thin-Film Transistors, Journal of Alloys and Compounds, 580 (2013) 10-14.
    [11] R. Krishnan, J. Thirumalai, R. Chandramohan, RoomTemperature Photo-Induced,
    Eu3+-Doped IGZO Transparent Thin-Films Fabricated Using Sol-Gel Method,Journal of Nanostructure in Chemistry, 3 (2013) Article number: 42.
    [12] S.L. Zhan, M. Zhao, D.M. Zhuang, E.G. Fu, M.J. Cao, L. Guo, L.Q. Ouyang, The
    Influence of Nitrogen Implantation on the Electrical Properties of Amorphous
    IGZO, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 406 (2017) 596-599.
    [13] S. Cho, S. Kim, D. Kim, M. Yi, J. Byun, P. Song, Effects of Yttrium Doping on
    a-IGZO Thin Films for Use as a Channel Layer in Thin-Film Transistors, Coatings, 9(1) (2019) Article number 44.
    [14] I.M. Choi, M.J. Kim, N. On, A. Song, K. Chung, H. Jeong, J.K. Park, J.K.
    Jeong, Achieving High Mobility and Excellent Stability in Amorphous In–Ga–Zn–
    Sn–O Thin-Film Transistors, IEEE Transactions on Electron Devices, 67 (2020)1014-1020.
    [15] T. Sun, L.-Q. Shi, C.-Y. Su, W.-H. Li, X.-W. Lv, H.-J. Zhang, Y.-H. Meng, W.
    Shi, S.-M. Ge, C.-Y. Tseng, Y.-F. Wang, C.-C. Lo, A. Lien, 51.1: Amorphous
    Indium-Gallium-Zinc Tin-Oxide TFTs with High Mobility and Reliability, SID
    Symposium Digest of Technical Papers, 46 (2015) 766-768.
    [16] Shan-Haw Chiou, Chiung-Hui Huang, Yu-Tzu Hsieh., P-type Metal Oxide Semiconductor Material and Method for Fabricating the Same, United States Patent, (2015).
    [17] Tzu-Chi Chou, Show-Ju Peng, Shan Haw Chiou, Yu-Tsz Shie, P-type Metal Oxide
    Semiconductor Material, China Patent, (2012).
    [18] K. Kobayashi, Y. Kohno, Y. Tomita, Y. Maeda, S. Matsushima, Possibility for
    Dole Doping into Amorphous InGaZnO4 Films Prepared by RF Sputtering, Physica
    status solidi c, 8 (2011) 531-533.
    [19] M. Orita, H. Tanji, M. Mizuno, H. Adachi, I. Tanaka, Mechanism of Electrical
    conductivity of transparent InGaZnO4, Physical Review B, 61 (2000) 1811-1816.
    [20] F. Oba, M. Choi, A. Togo, I. Tanaka, Point defects in ZnO: an approach from
    first principles, Science and Technology of Advanced Materials, 12 (2011)034302.
    [21] F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, J. Liu, W. Beyermann, High-Mobility
    Sb-Doped p-Type ZnO by Molecular-Beam Epitaxy, Applied Physics Letters, 87(2005) Article number: 152101.
    [22] L. Dai, H. Deng, F. Mao, J. Zang, The Recent Advances of Research on P-Type
    ZnO Thin Film, Journal of Materials Science: Materials in Electronics, 19(2008) 727-734.
    [23] A. Janotti, C.G. Van de Walle, Fundamentals of Zinc Oxide as a Semiconductor,
    Reports on Progress in Physics, 72 (2009) 126501.
    [24] Z.-W. Shang, H.-H. Hsu, Z.-W. Zheng, C.-H. Cheng, Progress and Challenges in
    P-type Oxide-Based Thin-Film Transistors, Nanotechnology Reviews, 8 (2019)422-443.
    [25] Y. Li, Z. Liu, K. Jiang, X. Hu, H2 Annealing Effect on the Structural and
    Electrical Properties of Amorphous InGaZnOFilms for Thin-Film Transistors,Journal of Non-Crystalline Solids, 378 (2013) 50-54.
    [26] C. Revenant, M. Benwadih, Morphology of Sol-Gel Porous In-Ga-Zn-O Thin Films
    as a Function of AnnealingTemperatures, Thin Solid Films, 616 (2016) 643-648.
    [27] R. Nasser, H. Elhouichet, Production of Acceptor Complexes in Sol-Gel ZnO Thin
    Films by Sb Doping, Journal of Luminescence, 196 (2018) 11-19.
    [28] Y. Caglar, M. Caglar, S. Ilican, XRD, SEM, XPS Studies of Sb Doped ZnO Films
    and Electrical Properties of Its Based Schottky Diodes, Optik, 164 (2018) 424-432.
    [29] C.-Y. Tsay, T.-T. Huang, Improvement of Physical Properties of IGZO Thin Films
    Prepared by Excimer Laser Annealing ofcSol-Gel Derived Precursor Films,Materials Chemistry and Physics, 140 (2013) 365-372.
    [30] L. Ling, X. Tao, S. Zhongxiao, L. Chunliang, M. Fei, Effect of Sputtering
    Pressure on Surface Roughness, Oxygen Vacancy and Electrical Properties of a-IGZO Thin Films, Rare Metal Materials and Engineering, 45 (2016) 1992-1996.
    [31] C.-H. Wu, F.-C. Yang, W.-C. Chen, C.-L. Chang, Influence of Oxygen/Argon
    Reaction Gas Ratio on Optical and Electrical Characteristics of Amorphous IGZO
    Thin Films Coated by HiPIMS Process, Surface and Coatings Technology, 303(2016) 209-214.
    [32] J.-H. Kim, E.-K. Park, M.S. Kim, H.J. Cho, D.-H. Lee, J.-H. Kim, Y. Khang, K.
    Park, Y.-S. Kim, Bias and Illumination Instability Analysis of Solution-Processed a-InGaZnO Thin-Film Transistors with Different Component Ratios,Thin Solid Films, 645 (2018) 154-159.
    [33] D.-H. Lee, S.-M. Park, D.-K. Kim, Y.-S. Lim, Y. Moonsuk, Effects of Ga
    Composition Ratio and Annealing Temperature on the Electrical Characteristics
    of Solution-processed IGZO Thin-film Transistors, JSTS: Journal of Semiconductor Technology and Science, 14 (2014) 163-168.
    [34] G. Amaratunga, V. Veerasamy, W. Milne, C. Davis, S.R. Silva, H. MacKenzie,
    Photoconductivity in Highly Tetrahedral Diamondlike Amorphous Carbon, Applied
    Physics Letters, (1993) 370-372.
    [35] D.P.B. Y.-M. Chiang, W.D. Kingery, Physical Ceramics: Principles for Ceramic
    Science and Engineering, John Wiley & Sons, (1997).
    [36] S. Millesi, M.R. Catalano, G. Impellizzeri, I. Crupi, G. Malandrino, F.
    Priolo, A. Gulino, Sb-Implanted ZnO Ultra-Thin Films, Materials Science in
    Semiconductor Processing, 69 (2017) 32-35.
    [37] E. Eqbal, E.I. Anila, Properties of Transparent Conducting Tin Monoxide (SnO)
    Thin Films Prepared by Chemical Spray Pyrolysis Method, Physica B: Condensed
    Matter, 528 (2018) 60-65.
    [38] Y.-H. Song, T.-Y. Eom, S.-B. Heo, J.-Y. Cheon, B.-C. Cha, D. Kim,
    Characteristics of IGZO/Ni/IGZO Tri-layer Films Deposited by DC and RF
    Magnetron Sputtering, Materials Letters, 205 (2017) 122-125.
    [39] Y.-S. Lee, Z.-M. Dai, C.-I. Lin, H.-C. Lin, Relationships Between the
    Crystalline Phase of an IGZO Target and Electrical Properties of a-IGZO
    Channel Film, Ceramics International, 38 (2012) S595-S599.
    [40] Y. Cheng, K. Yang, J. Chen, L. Che, X. Zhang, Influence of Molar Ratio of
    Sb/Zn On the Crystal, Electrical and Optical Properties of Sb-Doped ZnO Films,
    Journal of Alloys and Compounds, 699 (2017) 690-694.

    無法下載圖示 全文公開日期 2026/02/16 (校內網路)
    全文公開日期 2026/02/16 (校外網路)
    全文公開日期 2026/02/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE