簡易檢索 / 詳目顯示

研究生: 林勁甫
Ching-fu Lin
論文名稱: 以熱氧化金屬鋅薄膜法成長氧化鋅奈米線之特性分析
Growth and characterization of ZnO nanowires by thermal oxidation of metallic zinc films
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 氧化鋅奈米線氧化鋅奈米線熱氧化金屬鋅
外文關鍵詞: ZnO, nanowires, ZnO nanowires, thermal oxidation, metallic zinc
相關次數: 點閱:225下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗為利用離子束能量8、12以及16 keV 沉積不同表面粗糙度的鋅薄膜,再以330、380、400以及420 ℃熱氧化成長氧化鋅奈米線。實驗結果發現只有在離子束能量為12 keV 所沉積的鋅薄膜在熱氧化溫度為400 ℃下條件下,才會有較多且均勻的氧化鋅奈米線產生。氧化鋅奈米線平均長度約為1 µm而其寬度約為~30 nm,氧化鋅奈米線其成長方向為[110]。室溫下氧化鋅奈米線的光激發光光譜顯示強的近能隙發光在377 nm,半高寬為95 meV,且無缺陷造成的可見光發光。場發射結果顯示氧化鋅奈米線其開啟電場為7.9 V/µm,場發射增強因子為691。經由實驗結果及文獻,顯示利用熱氧化金屬鋅成長氧化鋅奈米線其成長與氧化鋅內缺陷擴散有關,本文將會提出可能的氧化鋅奈米結構成長機制。


Metallic zinc films with various surface roughness were prepared by ion beam sputter deposition utilizing beam energy at 8, 12 and 16 keV and the zinc films were subject to thermal oxidation at 330 ~ 420 ℃. Experimental results show that thermal oxidation of metallic zinc films deposited by 12 keV ion beam at 400 ℃ results the highest density of ZnO nanowires. The ZnO nanowires were grown along the [110] direction and the average length and diameter of the ZnO nanowires were 1 um and 30 nm, respectively. Room temperature photoluminescence study shows a strong near-band-edge emission at 377 nm with a full-width-at-half maximum of 95 meV and negligible deep level emission. Field emission study shows a turn-on field of 7.9 V/um and a field enhancement factor of 691. A growth mechanism of the ZnO nannowire is proposed.

目錄 中文摘要......................................................................I 英文摘要.....................................................................II 致謝........................................................................III 目錄.........................................................................IV 圖目錄........................................................................V 第一章 緒論...................................................................1 1.1 前言與研究動機.......................................................1 1.2 氧化鋅特性簡介.......................................................3 1.3 氧化鋅一維奈米結構簡介...............................................5 1.3.1 氣態-液態-固態 成長機制..............................................7 1.3.2 氣態-固態 成長機制.....................................................10 第二章 文獻回顧..............................................................12 2.1 理論基礎.................................................................12 2.1.1 熱氧化金屬鋅製備氧化鋅一維結構.........................................12 2.1.2 Cabrera-Mott金屬氧化理論...............................................17 2.2 離子束濺鍍...............................................................20 第三章 實驗步驟與量測方法....................................................21 3.1 實驗步驟流程圖表.........................................................21 3.2 實驗步驟及參數...........................................................22 3.2.1 清洗基板...............................................................22 3.2.2 沉積鋅薄膜.............................................................22 3.2.3 熱氧化.................................................................23 3.3 分析儀器介紹.............................................................24 3.3.1 場發射掃描式電子顯微鏡 (Field emission scanning electron microscopy, FE-SEM).........................................................................24 3.3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)...............25 3.3.3 光致發光 (Photoluminescnce, PL)........................................26 3.3.4 場發射特性量測.........................................................26 第四章 實驗結果與討論........................................................28 4.1 掃描式電子顯微鏡影像分析(傾斜30。角拍攝).................................29 4.2 穿透式電子顯微鏡及繞射圖譜分析...........................................36 4.3 光致螢光光譜分析.........................................................49 4.4 場發射特性分析...........................................................51 第五章 結論..................................................................53 參考文獻.....................................................................55

參考文獻

[1] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach, and T. Lee,“Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids Surf., A, Vol. 313-314, pp. 378-382, 2007.
[2] K. Keem, J. Kang, C. Yoon, D. Yeom, D. Y. Jeong, B. M. Moon, and S. Kim,“A fabrication technique for top-gate ZnO nanowires field-effect transistors by a photolithography process,” Microelectron. Eng., Vol. 84, pp. 1622-1626, 2007.
[3] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu,“Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., Vol. 83, No. 1, pp. 144-146, 2003.
[4] R. S. Wagner and W. C. Ellis,“Vapor-Liquid-Solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 4, No. 5, pp. 89-90, 1964.
[5] W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi,“Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., Vol. 80, No. 22, pp. 4232-4234, 2002.
[6] Y. Gui, C. Xie, Q. Zhang, M. Hu, J. Yu, and Z. Weng,“Synthesis and characterization of ZnO nanostructure by two-step oxidation of Zn nano- and microparticles,” J. Cryst. Growth, Vol. 289, pp. 663-669, 2006.
[7] M. H. Hung, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang,“Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., Vol. 13, No. 2, pp. 113-116, 2001.
[8] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang, and J. M. Kim,“Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer,” Nanotechnology, Vol. 19, pp. 235601-235604, 2008.
[9] Y. Chen, B. Qu, Y. A. Barnakov, Q. Tang, and J. Chen,“Microstructure studies of ZnO nanoneedles,” J. Mater. Sci. – Mater. Electron, Vol. 20, pp. 328-333, 2009.
[10] M. Grunze, W. Hirschwald, and D. Hofmann,“Zinc oxide: surface structure, stability and mechanisms of surface reactions,” J. Cryst. Growth, Vol. 52, pp. 241-249, 1981.
[11] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Mankino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki,“Reported temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater., Vol. 4, pp. 42-46, 2005.
[12] H. Rensmo, K. Keis, H. Lindstreöm, S. Södergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang, and M. Muhammed,“High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes,” J. Phys. Chem. B, Vol. 101, pp. 2598-2601, 1997.
[13] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin,“Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., Vol. 84, No. 18, pp. 3654-3656, 2004.
[14] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang, and T. H. Wang,“Bandgap narrowing and ethanol sensing properties of In-doped ZnO nanowires,” Nanotechnology, Vol. 18, pp. 225504-225507, 2007.
[15] H. D. Li, S. F. Yu, A. P. Abiyasa, C. Yuen, S. P. Lau, H. Y. Yang, and Eunice S. P. Leong.“Strain dependence of lasing mechanism in ZnO epilayer,” Appl. Phys. lett, Vol. 86, pp. 261111, 2005.
[16] E. A. Gulbransen, and T. P. Copan,“Microtopology of the surface reactions of oxygen and water vapour with metals,” Discuss. Faraday Soc., Vol. 28, pp. 229-233, 1959.
[17] S. Ren, Y. F. Bai, Jun Chen, S. Z. Deng, N. S. Xu, Q. B. Wu, and Shihe Yang,“Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation,” Mater. Lett., Vol. 61, pp. 666-670, 2007.
[18] W. Yu, and C. Pan,“Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism,” Mater. Chem. Phys., Vol. 115, pp. 74-79, 2009.
[19] L. C. Chao, J. W. Lee, and C. C. Liau,“ZnO nanoneedles prepared by ion implantation and thermal oxidation on metallic zinc foils,” J. Phys. D: Appl. Phys., Vol. 41, pp. 115405-115409, 2008.
[20] N. Cabrera, and N. F. Mott,“Theory of the oxidation of metals,” Rep. Prog. Phys., Vol. 12, pp. 163-184, 1949.
[21] R. H. Fowler and L. W. Nordheim,“Electron emission in intense electric fields,” Proc. R. Soc. London A., Vol. 119, pp. 173-181, 1928.
[22] D. B. Medved,“Photoconductivity and chemisorption kinetics in sintered zinc oxide semiconductor,” J. Phys. Chem. Solids, Vol. 20, pp. 255-267, 1961.
[23] W. Gopel,“Oxygen interaction of stoichiometric and non- stoichiometric ZnO prismatic surfaces,” Surf. Sci., Vol. 62, pp. 165-182, 1977.
[24] W. H. Hirschwald,“Zinc oxide: an outstanding example of a binary compound semiconductor,” Acc. Chem. Res., Vol. 18, pp. 228-234, 1985.
[25] T. Asokan, and R. Freer,“Grain and grain boundary conduction in zinc oxide varistors before and after DC degradation,” J. Eur. Ceram. Soc., Vol. 11, pp. 545-550, 1993.
[26] B. J. Wuensch, and H. L. Tuller,“Lattice diffusion, grain boundary diffusion and defect structure of ZnO,” J. Phys. Chem. Solids, Vol. 55, No. 10, pp. 975-984, 1994.
[27] N. Wang, K. K. Fung, S. Wang, and S. Yang,“Oxide-assisted nucleation and growth of copper sulphide nanowire arrays,” J. Cryst. Growth, Vol. 233, pp. 226-232, 2001.
[28] S. Rackauskas, A. G.. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen, and E. I. Kauppinen,“Mechanism investigation of ZnO nanowires growth,” Appl. Phys. Lett., Vol. 95, pp. 183114, 2009.
[29] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito,“Control of preferred orientation for ZnOx film: control of self-texture,” J. Cryst. Growth, Vol. 130, pp. 269-279, 1993.
[30] I. Shalish, H. Temkin, and V. Narayanamurti,“Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, Vol. 69, pp. 245401, 2004.

QR CODE