簡易檢索 / 詳目顯示

研究生: 歐咸志
Shien-chih Ou
論文名稱: 微型固態氧化物燃料電池之雙極板流道設計
Flow Channel Design of Interconnect for Microscale Solid Oxide Fuel Cell (SOFC) - A Numerical Investigation
指導教授: 孫珍理
Chen-li Sun
口試委員: 蘇育全
Yu-chuan Su
陳明志
none
黃炳照
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 149
中文關鍵詞: 固態氧化物燃料電池性能分析流道設計
外文關鍵詞: solid oxide fuel cell, performance analysis, interconnect manifold design
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主要針對固態氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC) 中之雙極板 (interconnect),藉由數值軟體建立3D模型並搭配蛇型、雙蛇型、歧管型及棋盤型四種流道設計,分析電池內部之氣體流場與性能輸出之相互關係。流道設計目標為使燃料均勻分佈及促進電化學反應,以提升輸出效能;並探討因電化學反應所產生之溫度變化,以期能減少溫度差,降低熱應力並延長材料壽命。
    模擬結果顯示,流道設計對於燃料的濃度分佈影響甚巨,並且在不同熱傳邊界條件下產生不同的效應。由於各流道設計只有在高電流密度下操作才有性能上的差異,因此在絕熱條件及電流密度不高的情形下,各流道所表現之性能相當接近。當電池在等溫條件及高入口燃料濃度下操作,隨著電流密度的提升,雙蛇型與棋盤型流道開始有較較佳的性能表現。研究中並發現當電流密度甚小時,流道間隔與電極接觸處有較低的ohmic overpotential,因此電極表面上電流分佈將集中在較寬的流道間距上;在高電流密度時,因燃料濃度分佈不均,所以電極表面上電流分佈便開始由燃料濃度分佈所主導。熱傳方面,電化學反應所生成的熱量,在絕熱邊界條件下,只能藉由反應剩餘的反應物及生成物帶走熱量,這使得電池內部溫度大大提升。電流密度由低至高,電池內部溫度差異可達800 K。在微小尺度中,傳統使用的蛇型流道在性能上並無較為優秀的表現,但流道內的壓降卻遠遠超越其它流道設計,這對於氣體輸送成本相當不利。歧管型與棋盤型流道在流道壓降上表現較佳,在高燃料濃度下操作的性能表現比起其它兩種流道設計也不惶多讓。唯獨此兩流道設計容易受到氧氣質量分量的影響,因此當使用此兩種流道時,需對流道內的氧氣質量分量加以控制。


    In this study, the impacts of flow channel design of interconnect on the performance of microscale SOFC (Solid Oxide Fuel Cell) are evaluated through cell-level simulation with a commercial software package CFD-ACE. Four different flow pattern archetypes are examined: serpentine, double serpentine, staggered cylinder, and diagonal rib. Co-flow configuration is applied for fuel delivery in this investigation. To keep the ohmic loss in the same order for all four archetypes, the ratio of interconnect contact area (rib) to channel projection area is approximately 0.5. The influences of the different flow pattern designs on the distributions of the reactant concentrations, temperature, and current density are discussed.
    The performance differences of the four archetypes are only distinguishable at high current density. Under adiabatic condition, high temperature inside the cell decreases EMF and results in less than 3% discrepancies on the polarization curves for all four archetypes. Under isothermal condition, EMF is a constant and SOFC is capable of producing more power. When SOFCs are operated at high output voltage, electrons are accumulated at the bottom of wider rib and current density distribution is not relevant to fuel distribution. On the contrary, fuel distribution plays a significant role on current density pattern at low output voltage. The variations of the pressure drop are mainly caused by different flow characteristics of the flow channel designs and affect the cost for fuel delivery. Serpentine channel results in largest pressure drop comparing to other archetypes. Although the pressure drops in diagonal rib and staggered cylinder archetypes are much lower than serpentine and double serpentine design, they tend to be more sensitive to fuel concentration and their performance is detracted with low mass fraction of oxygen supply.

    摘要 i Abstract ii 目錄 iv 符號索引 vii 表目錄 x 圖目錄 xi 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 7 第二章 基本原理與數值分析簡介 8 2.1 電池簡介 8 2.1.1 基本原理 8 2.1.2 效能計算 9 2.1.3 不可逆性計算 10 2.1.3.1 Activation overpotential 11 2.1.3.2 Ohmic overpotential 12 2.1.3.3 Concentration overpotential 12 2.1.4 材料物理特性 13 2.1.4.1 電解質 13 2.1.4.2 電極 14 2.1.4.3 雙極板 14 2.2 流道相關專利 15 2.3 基本假設 16 2.4 數值模型 16 2.4.1 模型建立 16 2.4.2 邊界條件設定 17 2.5 網格獨立性分析 17 2.6 結論 19 第三章 數值結果 20 3.1 熱傳邊界條件之影響 20 3.1.1 溫度曲線 21 3.1.2 性能曲線 22 3.1.3 功率輸出曲線 24 3.1.4 流道壓降曲線 24 3.1.5 燃料消耗量曲線 25 3.2 氧氣質量分量之影響 26 3.2.1 溫度曲線 26 3.2.2 性能曲線 27 3.2.3 功率輸出曲線 27 3.2.4 流道壓降曲線 28 3.2.5 燃料消耗量曲線 28 3.3 結論 28 第四章 電池內部現象分析 30 4.1 流速分佈 30 4.1.1 流道設計之影響 30 4.1.2 操作電壓之影響 30 4.1.3 熱傳邊界條件之影響 32 4.1.4 氧氣質量分量之影響 33 4.2 壓力分佈 33 4.2.1 流道設計之影響 33 4.2.2 操作電壓之影響 35 4.2.3 熱傳邊界條件之影響 35 4.2.4 氧氣質量分量之影響 36 4.3 溫度分佈 36 4.3.1 流道設計之影響 36 4.3.2 操作電壓之影響 37 4.3.3 熱傳邊界條件之影響 37 4.3.4 氧氣質量分量之影響 37 4.4 質傳分佈 38 4.4.1 流道設計之影響 38 4.4.2 操作電壓之影響 39 4.4.3 熱傳邊界條件之影響 41 4.4.4 氧氣質量分量之影響 41 4.5 電流密度分佈 42 4.5.1 流道設計之影響 42 4.5.2 操作電壓之影響 43 4.5.3 熱傳邊界條件之影響 43 4.5.4 氧氣質量分量之影響 44 4.6 結論 44 第五章 流場觀察實驗 46 5.1 實驗設備 46 5.2 實驗方法 47 5.3 實驗結果 47 5.4 結論 48 第六章 結論與建議 49 6.1 結論 49 6.2 建議 50 參考文獻 52 附錄 55 A.1 假設合理性證明 55 A.2 統御方程式 56

    [1] J. Larmine and A. Dicks, Fuel Cell Systems Explained, 1st ed. West Sussex: John Wiley & Sons, 2000.
    [2] G. Hoogers, Fuel Cell Technology Handbook, 1st ed. Boca Raton: CRC Press, 2003.
    [3] F. Issacci, "Thermal management and transport phenomena in fuel cell system - practical issues," presented at The 6th ASME-JSME Thermal Engineering Joint Conference, March 16-20, Torrance, California, 2003.
    [4] C. S. Montross, H. Yokokawa, and M. Dokiya, "Thermal stresses in planar solid oxide fuel cells due to thermal expansion differences," British Ceramic Transactions, vol. 101, pp. 85-93, 2002.
    [5] J. R. Ferguson, J. M. Fiard, and R. Herbin, "Three-dimensional numerical simulation for various geometries of solid oxide fuel cells," Journal of Power Sources, vol. 58, pp. 109-122, 1996.
    [6] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, "New materials for polymer electrolyte membrane fuel cell current collectors," Journal of Power Sources, vol. 80, pp. 235-241, 1999.
    [7] H. Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, and I. Yasuda, "Evaluation and modeling of performance of anode-supported solid oxide fuel cell," Journal of Power Sources, vol. 86, pp. 423-431, 2000.
    [8] H. Yakabe, T. Ogiwara, M. Hishinuma, and I. Yasuda, "3-D model calculation for planar SOFC," Journal of Power Sources, vol. 102, pp. 144-154, 2001.
    [9] K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, "Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks," Journal of Power Sources, vol. 113, pp. 109-114, 2003.
    [10] J. Yuan, M. Rokni, and B. Sunden, "Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells," International Journal of Heat and Mass Transfer, vol. 46, pp. 809-821, 2003.
    [11] Z. Lin, J. W. Stevenson, and M. A. Khaleel, "The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs," Journal of Power Sources, vol. 117, pp. 92-97, 2003.
    [12] A. Kumar and R. G. Reddy, "Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells," Journal of Power Sources, vol. 113, pp. 11-18, 2003.
    [13] C. W. Tanner and A. V. Virkar, "A simple model for interconnect design of planar solid oxide fuel cells," Journal of Power Sources, vol. 113, pp. 44-56, 2003.
    [14] B. A. Haberman and J. B. Young, "Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell," International Journal of Heat and Mass Transfer, vol. 47, pp. 3617-3629, 2004.
    [15] F. J. Gardner, M. J. Day, N. P. Brandon, M. N. Pashley, and M. Cassidy, "SOFC technology development at Rolls-Royce," Journal of Power Sources, vol. 86, pp. 122-129, 2000.
    [16] S. W. Cha, R. O'Hayre, S. J. Lee, Y. Saito, and F. B. Prinz, "Geometric scale effect of flow channels on performance of fuel cells," Journal of the Electrochemical Society, vol. 151, pp. A1856-A1864, 2004.
    [17] S. W. Cha, R. O'Hayre, Y. Saito, and F. B. Prinz, "The scaling behavior of flow patterns: A model investigation," Journal of Power Sources, vol. 134, pp. 57-71, 2004.
    [18] J. A. Rock, "Converging/Diverging flow channels for fuel cell", U.S. Patent 6699614 B2, March 2, 2004.
    [19] Nicholas G. Vitale, "Fluid flow plate for decreased density of fuel cell assembly", U.S. Patent 5981098, November 9, 1999.
    [20] M. H. Nelson, "Fuel cell channel distribution for hydration water", U. S. Patent 6303245 B1, October 16, 2001.
    [21] S. J. Granata and B. M. Woodle, "Fuel cell plates with skewed process channels for uniform distribution of stack compression load", U.S. Patent 4853301, August 1, 1989.
    [22] J. A. Rock, "Mirrored serpentine flow channels for fuel cell", U.S. Patent 6099984, August 8, 2000.
    [23] J. A. Rock, "Serially-linked serpentine flow channels for PEM fuel cell", U.S. Patent 6309773 B1, October 30, 2001.
    [24] H. H. Voss and C. Y. Chow, "Coolant flow field plate for electrochemical fuel cells", U.S. Patent 5230966, July 27, 1993.
    [25] X. REN and S. Gottesfild, "Flow channel device for electrochemical cells", W.O. Patent 01/48852 A1, July 5, 2001.
    [26] V. Gurau, F. Barbir, and Jay K. Neutzler, "Fuel cell collector plates with improved mass transfer channels", U.S. Patent 6551736 B1, April 22, 2003.
    [27] Y. S. Yoo, H. C. Lim, J. W. Park, and S. H. Park, "Solid oxide fuel cells having gas channel", U.S. Patent 2004/0091766 A1, May 13, 2004.
    [28] K. B.Oldham and J. C. Myland, Fundamentals of Electrochemical Science. San Diego: Academic Press, Inc., 1994.
    [29] F. M. White, viscous fluid flow, 2nd ed. New York: McGraw-Hill, Inc., 1991.
    [30] B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed. New York: McGraw-Hill, 2001.
    [31] Z.-H. Yang, "Design and fabrication of the dynamic fuel evaporator for microscale power system," M.S. thesis, Department of Mechanical Engineering., National Taiwan University of Science and Technology, Taipei, 2005.
    [32] Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 4th ed. New York: McGraw-Hill, Inc., 2002.
    [33] CFD-ACE+ User Manual, C. R. Corporation, Australia, 2003
    [34] W. Z. Zhu and S. C. Deevi, "A review on the status of anode materials for solid oxide fuel cells," Materials Science and Engineering A, vol. 362, pp. 228-239, 2003.
    [35] M. Kuznecov, P. Otschik, P. Obenaus, K. Eichler, and W. Schaffrath, "Diffusion controlled oxygen transport and stability at the perovskite/electrolyte interface," presented at 6th ISSFIT Conf., May 9-12 2001, Cracow, Poland, 2003.
    [36] E. Fuel Cell Group, AIST, "Thermal and physical properties of materials for fuel cells." Available http://unit.aist.go.jp/energyelec/fuelcell/english/database/thphy1.html
    [37] J.-W. Moon, H.-J. Hwang, M. Awano, and K. Maeda, "Preparation of NiO-YSZ tubular support with radially aligned pore channels," Materials Letters, vol. 57, pp. 1428-1434, 2003.
    [38] T. Tsai and S. A. Barnett, "Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance," Solid State Ionics, vol. 93, pp. 207-217, 1997.
    [39] M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda, Y. Esaki, Y. Sakaki, and S. Nagata, "Performance analysis of planar-type unit SOFC considering current and temperature distributions," Solid State Ionics, vol. 132, pp. 297, 2000.
    [40] R. M. C. Clemmer and S. F. Corbin, "Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes," Solid State Ionics, vol. 166, pp. 251-259, 2004.
    [41] E. Wanzenberg, F. Tietz, P. Panjan, and D. Stover, "Influence of pre- and post-heat treatment of anode substrates on the properties of DC-sputtered YSZ electrolyte films," Solid State Ionics, vol. 159, pp. 1-8, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE