簡易檢索 / 詳目顯示

研究生: 錢柏君
Po-Chun Chien
論文名稱: 在正交分頻多工系統中基於間接和直接學習架構使用多項式預扭器之效能分析
Performance analysis of polynomial predistorter based on indirect and direct learning architecture in OFDM systems
指導教授: 張立中
Li-Chung, Chang
口試委員: 曾德峰
Der-Feng, Tseng
方文賢
none
陳永芳
none
曾恕銘
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 108
中文關鍵詞: 預扭器功率放大器正交分頻多工正交振幅調變
外文關鍵詞: Predistortion, Power Amplifier, OFDM, QAM
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工系統具有高的頻寬效率,且能夠對抗多重路徑衰減干擾的優點;其主要的缺點為具有高的峰值對平均功率比 (high peak to average power ratio, PAPR)。由於高的峰對平均功率比,使得經過高功率放大器的信號,受到放大器操作點的影響而被截掉,引起失真。最簡單消除的方法,是降低傳送到放大器信號的強度,使得放大器的操作點落在線性區;但此作法會造成功率效益過低,不是合理解決方法。基頻的數位預扭器 (digital predistorter, DPD)能夠有效線性化放大器以提升功率效益。當數信號經過非線性放大器時,其輸出會有頻譜再生的現象,而造成鄰近通道的干擾。因此,線性化功率放大器降低位元錯誤率的同時,也必須能夠抑制頻譜再生。
    在本篇論文中,我們將分析在正交分頻多工與正交振幅調變系統下,使用DPD來補償由高功率放大器所引起的非線性失真,使之線性化。我們將使用到多項式 (Polynomial)預扭器補償有記憶性的功率放大器 (power amplifier, PA),而在PA方面使用的是Wiener PA 以及Wiener-Hammerstein PA。在補償的架構上,在補償的預扭器上,我們考慮兩種情形,一個是記憶長度為0 (M = 0)、階數 (order)長度為5 (K = 5)的無記憶性預扭器,一個是記憶長度為2、秩序長度為5有記憶性預扭器。我們使用間接學習架構 (Indirect Learning Architecture, ILA)與直接學習架構 (Indirect Learning Architecture, DLA)結合多項式模組,藉由Least square (LS)、Least Mean Square (LMS)和Normalized Least Mean Square (NLMS)求得DPD的多項式係數,達到線性化的功率放大器。在分析方面,我們將藉由TD (Total Degradation)和PSD (Power Spectral Density)來分析系統效能來比較不同的系統模型。


    The orthogonal frequency division multiplex (OFDM) system has an advantage of high bandwidth efficiency, and is able to resist the multipath fading interference; its major disadvantage is high peak to average power ratio (PAPR). The signal passing a power amplifier can be clipped depending on the operation point of the power amplifier. This clipped signal results in distortion. The easiest way to counteract the distortion is to reduce the signal power which enters the power amplifier. This makes the operation point of the power amplifier drop to the linear region which will significantly reduce power efficiency. Digital baseband predistorter (DPD) can efficiently linearize the power amplifier so as to improve the power efficiency. In addition, it can reduce the bit error rate and also suppress spectrum regrowth.
    In this thesis, we analyze the use of DPD to compensate the nonlinear distortion caused by the power amplifier in OFDM systems. We use polynomial predistorters to compensate the memory power amplifier. In the PA model, we use the Wiener PA and Wiener-Hammerstein PA. In the predistorter model, we use memoryless polynomial predictorter and memory polynomial predictorter. We employ indirect learning architecture and direct learning architecture combined with polynomial predistorters, whose coefficients are adapted using least-squares (LS), least-mean-square (LMS) and normalized least-mean-square (NLMS) algorithms. Finally, the total degradation (TD) and power spectrum density (PSD) are used as performance measures to compare different system models.

    論文摘要 I ABSTRACT III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 序論 1 第二章 正交分頻多工系統模型 4 2.1 典型的OFDM系統 6 2.2 非線性放大器的影響 8 第三章 功率放大器 9 3.1 無記憶性的功率放大器 12 3.1.1 Traveling Wave Tube Amplifier (TWTA 12 3.1.2 無記憶性多項式模型 13 3.2 具記憶性的功率放大器模型 16 3.2.1 Volterra 級數 16 3.2.2 多項式模型 (Polynomial Model) 17 3.2.3 Wiener model 18 3.2.4 Hammerstein 模型 19 3.2.5 Wiener-Hammerstein 模型 19 第四章 預扭器模型 21 4.1 在間接學習架構的概念下記憶性和無記憶性的多項式預扭器 22 4.2 在直接學習架構的概念下記憶性和無記憶性的多項式預扭器 24 第五章 演算法 25 5.1 在間接學習架構中 25 5.1.1 搭配LS演算法 25 5.1.2 搭配LMS演算法 26 5.1.3 搭配.NLMS演算法 27 5.2 在直接學習架構中 28 5.2.1 搭配LS演算法 28 5.2.2 搭配LMS演算法 29 5.2.3 搭配NLMS演算法 30 第六章 模擬和討論 31 6.1 間接學習架構 39 6.1.1 在功率放大器模型1使用LS演算法 39 6.1.2 在功率放大器模型1中比較LS和LMS演算法 46 6.1.3 在功率放大器模型1中比較LS和NLMS演算法 52 6.1.4 在功率放大器模型2使用LS演算法 56 6.1.5 在功率放大器模型2中比較LS和LMS演算法 61 6.1.6 在功率放大器模型2中比較LS和NLMS演算法 65 6.1.7 在功率放大器模型3使用LS演算法 69 6.1.8 在功率放大器模型3中比較LS和LMS演算法 74 6.1.9 在功率放大器模型3中比較LS和NLMS演算法 78 6.1.10 結論 81 6.2 直接學習架構 83 6.2.1 在功率放大器模型1中使用LMS演算法比較間接和直接學習 84 架構 84 6.2.2 在功率放大器模型1中使用NLMS演算法比較間接和直接學 88 習架構 88 6.2.3 在功率放大器模型2中使用LMS演算法比較間接和直接學 91 習架構 91 6.2.4 在功率放大器模型2中使用NLMS演算法比較間接和直接學 94 習架構 94 6.2.5 在功率放大器模型3中使用LMS演算法比較間接和直接學 97 習架構 97 6.2.6 在功率放大器模型3中使用NLMS演算法比較間接和直接學 100 習架構 100 6.2.5 結論 102 第七章 總結和未來研究發展 104

    [1] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “A new adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, no. 4, pp. 22-44, Apr. 2003.
    [2] Y. Kim, Y. Yang, S. H. Kang, and B. Kim, “Linearization of 1.85 GHz amplifier
    using feedback predistortion loop,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, vol. 3, pp. 1675–1678, Jun. 1998.
    [3] A. N. D’Andrea, V. Lottici, and R. Reggiannini, “RF power amplifier linearization through amplitude and Phase Predistortion,” IEEE Transactions on Communications, vol. 44, no. 11, pp. 1477-1484, Nov. 1996.
    [4] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Transactions on Vehicular Technology, vol. 4, no. 4, pp. 374-382, Nov.1990.
    [5] M. Di Benedetto and P. Mandarini, “A new analog predistortion criterion with application with application to high efficiency digital radio links,” IEEE Transactions on Communications, vol. 43, no. 12, pp. 2996-2974, Dec. 1995.
    [6] A. A. M. Saleh and J. Salz, “Adaptive linearization of power amplifiers in digital
    radio systems,” Bell System Tech. J., vol.46, no.4, pp.1019-1033, Apr. 1983.
    [7] G.. Karam and H. Sari, “ A data predistortion technique with memory for QAM
    radio systems,” IEEE Transactions on Communications, vol.39, no. 2, pp. 336--344, Feb. 1991.
    [8] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Transactions on Communications, vol. COM-29, no. 11, pp. 1715-1720, Nov. 1981.

    [9] G. Karam and H. Sari, “Analysis of predistortion, equaliztion, and ISI cancellation techniques in digital radio systems with nonlinear transmit amplifiers,” IEEE Transactions on Communications, vol. 37, pp. 1245-1253, Dec. 1989.
    [10] S. Pupolin and L. J. Greenstein, “Performance analysis of digital radio links with nonlinear transmit amplifiers,” IEEE Journal on Selected Areas Communications, vol. 5, no. 3, pp. 534-546, Apr. 1987.
    [11] J. Tsimbinos and K. V. Lever, ”Computational complexity of Volterra based nonlinear compensators,” IEEE Electronics Letters, vol. 32, no. 9, pp. 852-854, Apr. 1996.
    [12] Raich, Raviv, “Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion,” Ph.D. Dissertation, Georgia institute of technology, March 2004.
    [13] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.
    [14] Kim, J. and Konstantinou, K., “Digital predistortion of wideband signals based on power amplifier model with memory," IEEE Electronics Letters, vol. 37, no. 23, pp. 1417-1418, Nov. 2001.
    [15] C. J. Clark, G. Chrisikos, M. S. Muha, A. A. Moulthrop, and C. P. Silva, “Time-domain envelope measurement technique with application to wideband power amplifier modeling,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2531–2540, Dec. 1998.

    [16] Lei Ding, Zhou, G.T., Morgan, D.R., Zhengxiang Ma, Kenney, J.S., Jaehyeong Kim and Giardina, C.R.; “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1, pp.159 – 165, Jan. 2004.
    [17] Gilabert, P., Montoro, G. and Bertran, E. “On the Wiener and Hammerstein models for power amplifier predistortion,” Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, vol. 2, pp. 4 pp, 4-7 Dec. 2005.
    [18] Manne, G. K. and Yao, T. “On the predistortion technique for improving transmission linearity of OFDM system,” Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 6, pp.3876 – 3879, Sept. 2004.
    [19] Jian Li and Ilow, J. “A least-squares Volterra predistorter for compensation of non-linear effects with memory in OFDM transmitters,” Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual 16-18, pp.197-202, May 2005.
    [20] Jian Li and Ilow, J “Adaptive Volterra predistorters for compensation of non-linear effects with memory in OFDM transmitters,” Communication Networks and Services Research Conference, 2006. CNSR 2006. Proceedings of the 4th Annual, pp. 4 pp, May 2006.
    [21] Simon Haykin, Adaptive Fikter Theory, 4th edition, 2002 by Prentice-Hall, Inc.
    [22] Keun-Sik Jin, Yoan Shin and Sungbin Im, “Compensation of nonlinear distortion with memory in multi-code CDMA systems,” IEEE International Conference on Communications, Vol. 1, pp.565 – 569, June 1999.
    [23] C. Eun and E. J. Powers, "A new Volterra predistorter based on the indirect learning architecture," IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 223-227, Jan. 1997.

    無法下載圖示 全文公開日期 2012/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE