簡易檢索 / 詳目顯示

研究生: 陳彥廷
Yen-ting Chen
論文名稱: 具有非飽和叢發流量與動態TXOP方法之無線區域網路之效能分析
Performance Analysis of Wireless Local Area Networks with a Dynamic TXOP Scheme under Unsaturated and Bursty Traffic
指導教授: 鍾順平
Shun-ping Chung
口試委員: 王乃堅
Nai-jian Wang
林永松
Yeong-sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 111
中文關鍵詞: IEEE 802.11eTXOP波以松程序馬可夫調變之波以松程序自我類似性成功送達率延遲
外文關鍵詞: IEEE 802.11e, TXOP, Poisson, MMPP, self-similar, throughput, delay
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在IEEE 802.11e的無線區域網路環境中,EDCA進接機制藉由一種優先權方法來對不同應用的進接類別提供類別之間的服務品質。然而,EDCA機制缺乏對於在同類別之中具有不同速率的流量的服務品質保證,這是因為相同類別的AC會被指配相同的MAC參數。在這篇論文中,我們提出一個動態TXOP機制來提供類別之間的服務品質,同時也能保障同類別之內的服務品質。我們所提出的機制會根據目前行動台傳輸佇列的封包數目來調整TXOP參數。同時每個行動台的TXOP參數也決定於它的傳輸速率。在這裡我們並非考慮每個行動台都是飽和的情況(亦即每個行動台的佇列中總是有一個封包),取代而之的,我們考慮的是更真實的Poisson流量模型(亦即流量是未飽和的)。然而眾所皆知的是,在真實的網路環境中,具有自我類似性的多媒體流量會比Poisson流量更具有叢發性。因此為了模擬自我類似性的流量,我們同時也考慮MMPP流量模型。我們發展一種數學方法來在Poisson及MMPP流量之下計算各種效能指標。我們比較不使用TXOP機制、使用固定TXOP參數的機制以及使用動態TXOP機制之間的效能指標。我們可以看到,動態TXOP機制在成功送達率、平均進接延遲以及端對端延遲方面都優於其他兩種機制。我們所感興趣的效能指標包含成功送達率、碰撞機率、平均進接延遲、端對端延遲及封包遺失率。最後但非最不重要的,我們使用C語言來撰寫電腦模擬程式,且以獲得的電腦模擬結果來驗證數學解析結果的正確性。


    The Enhanced Coordination Channel Access (EDCA) in IEEE 802.11e wireless local area networks is designed to provide inter-class Quality of Service (QoS) guarantee by providing a prioritized scheme to differentiate Access Categories (ACs) for different kinds of applications. However, EDCA cannot provide intra-class QoS guarantee within the same AC, since each flow within the same AC are assigned the same MAC parameters regardless of their respective bit rate. In this thesis, we propose a dynamic TXOP scheme for providing not only the inter-class QoS guarantee, but also the intra-class QoS guarantee. The proposed dynamic TXOP scheme adjusts the TXOP limits of mobile stations according to the current transmission queue occupancy. The TXOP limits of each mobile station are also dependent on its bit rate. Instead of assuming that the traffic of each mobile station is saturated, i.e., there is always a packet in the queue of each mobile station, we study the more realistic Poisson traffic model, i.e., the traffic is unsaturated. It is well known that the self-similar multimedia traffic in real networks is more bursty than Poisson traffic. Therefore, we also consider the MMPP traffic model, which is used to emulate the self-similar traffic. We develop an analytical method to calculate the performance metrics under Poisson and MMPP traffic models. We compare the performance metrics of three schemes: non-TXOP, fixed TXOP, and dynamic TXOP. We show that the dynamic TXOP scheme outperforms the other two schemes in terms of throughput, service delay, and end-to-end delay. The performance metrics of interest are throughput, collision probability, service delay, end-to-end delay, and frame loss probability. Last but not least, analytical results are validated via simulation results, and the simulation program is written in C language.

    摘要……………………………………………………………………………………i Abstract………………………………………………………………………………ii List of Figures…………………………………………………………………………v List of Tables………………………………………………………………………ix Chapter 1 Introduction…………………………………………………………… 1 Chapter 2 IEEE 802.11 Series Review…………………………………………… 4 2.1 Architecture……………………………………………………… 4 2.2 Physical Layer…………………………………………………… 5 2.3 Medium Access Control Layer………………………………… 5 2.4 Distributed Coordination Function (DCF)……………………… 6 2.5 EDCA Overview………………………………………………… 8 Chapter 3 System Model………………………………………………………… 11 3.1 Homogenous Scenarios………………………………………… 12 3.1.1 Intra -plane transitions……………………………… 14 3.1.2 Inter -plane transitions……………………………… 15 3.2 Heterogeneous Scenarios………………………………………. 17 3.3 Steady-State Probability Distribution…………………………... 18 3.3.1 Intra -plane Reductions……………………………… 18 3.3.2 Inter -plane Reductions……………………………… 19 3.4 Performance Metrics………………………………………... 22 3.4.1 Throughput……………………………………………... 22 3.4.2 Average MAC Delay…………………………………… 23 Chapter 4 Numerical Results……………………………………………………. 29 4.1 The Effect of TXOP and Traffic Model………………………... 29 4.1.1 Poisson Traffic Model………………………………….. 29 4.1.2 MMPP Traffic Model…………………………………... 32 4.2 Intra-AC QoS Differentiation………………………………… 35 4.2.1 Non-TXOP Model……………………………………… 35 4.2.2 Fixed TXOP Model…………………………………….. 36 4.2.3 Dynamic TXOP Model………………………………… 38 4.3 The Effect of TXOP Parameters…..…………………………… 39 4.3.1 The Effect of Threshold...……………………………… 39 4.3.1.1 Poisson Traffic Model……………………….. 39 4.3.1.2 MMPP Traffic Model……………………...… 40 4.3.2 The Effect of TXOP Limits…..………………………… 41 4.3.2.1 Poisson Traffic Model……………………….. 41 4.3.2.2 MMPP Traffic Model……………………...… 42 Chapter 5 Conclusions………………………………………………… 109 References……………………………………………………………………… 110

    [1] "IEEE Standard for Information technology - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," IEEE Std 802.11-2007, pp. C1-1184, 2007.
    [2] B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, "IEEE 802.11 Wireless Local Area Networks," IEEE Communications Magazine , vol. 35, pp. 116-126, 1997.
    [3] "IEEE Standard for Information technology - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements," IEEE Std 802.11e-2005, pp. 1-189, 2005.
    [4] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke, "Analysis of IEEE 802.11e for QoS Support in Wireless LANs," IEEE Wireless Communications, vol. 10, pp. 40-50, 2003.
    [5] A. Ksentini, A. Nafaa, A. Gueroui, and M. Naimi, "ETXOP: A Resource Allocation Protocol for QoS-Sensitive Services Provisioning in 802.11 Networks," Performance Evaluation, vol. 64, pp. 419-443, Jun. 2007.
    [6] G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," IEEE Journal on Selected Areas in Communications, vol. 18, pp. 535-547, 2000.
    [7] I. Tinnirello, G. Bianchi, and Y. Xiao, "Refinements on IEEE 802.11 Distributed Coordination Function Modeling Approaches," IEEE Transactions on Vehicular Technology, vol. 59, pp. 1055-1067, 2010.
    [8] D. Malone, K. Duffy, and D. Leith, "Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions," Ieee/Acm Transactions on Networking, vol. 15, pp. 159-172, Feb. 2007.
    [9] P. Latkoski, Z. Hadzi-Velkov, and B. Popovski, "Extended Model for Performance Analysis of Non-Saturated IEEE 802.11 DCF in Erroneous Channel," 2006 IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 783-788, 2006.
    [10] C. Mingxin, G. Liu, D. Wu, and G. Zhu, "A Unified Model for Performance Analysis of 802.11 in Heterogeneous Traffic and Saturation Condition," ICC '08., pp. 2644-2649, 2008.
    [11] G. Anastasi and L. Lenzini, "QoS Provided by the IEEE 802.11 Wireless LAN to Advanced Data Applications: a Simulation Analysis," Wireless Networks, vol. 6, pp. 99-108, 2000.
    [12] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, "Long-Range Dependence in Variable-Bit-Rate Video Traffic," IEEE Transactions on Communications, vol. 43, pp. 1566-1579, 1995.
    [13] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the Self-Similar Nature of Ethernet Traffic (extended version)," IEEE/ACM Transactions on Networking,vol. 2, pp. 1-15, 1994.
    [14] M. Geyong, J. Hu and M. E. Woodward, "A Dynamic IEEE 802.11e TXOP Scheme in WLANs under Self-Similar Traffic: Performance Enhancement and Analysis," ICC '08., pp. 2632-2636, 2008.
    [15] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3 ed.: John Wiley, 1998.

    QR CODE