簡易檢索 / 詳目顯示

研究生: 蕭致平
Chih-ping Hsiao
論文名稱: 線上光學檢測技術分析準分子雷射退火鍺膜之參數與矽膜成長機制
Investigation of Ge thin film analysis process during excimer laser annealing using in-situ time-resolved optical reflection and transmission measurement and Si thin films recrystallization mechanism
指導教授: 鄭正元
Jeng-ywan Jeng
口試委員: 吳忠幟
Chung-chih Wu
葉文昌
Wen-chang Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 鍺膜線上光學檢測矽膜再結晶成長方向
外文關鍵詞: Ge, TRORT, crystallization mechanisms of poly-Si
相關次數: 點閱:284下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因本實驗室所建立的線上光學檢測系統於準分子雷射退火矽膜所擷取之反射率與穿透率波形,如能利用TEM斷面分析互相驗證,並觀察矽膜退火後之微結構變化將能更確定矽膜的成長機制,也間接肯定其系統的正確性,故本研究將試片進行退火後再運用TEM進行分析與探討。另外因鍺膜比矽膜有較高之載子移動率,因此以準分子雷射退火鍺膜後再運用線上光學檢測系統,可即時檢測出非晶鍺薄膜於準分子雷射退火期間反射率與穿透率之變異性,進而分析相關物理現象和量測鍺膜融化時間;此外本研究亦透過線上光學檢測系統搭配不同吸收係數之半透光膜熱滯留層SiON,以分析不同參數對於鍺膜再結晶特性之影響性。研究結果發現,吸收係數的增加會使鍺膜的雷射退火能量增高、融化時間提高,晶粒尺寸亦可從1 μm成長變大可達10 μm,且結晶品質亦可隨著晶粒尺寸成長而變好,但晶粒尺寸的增加必須搭配適當的吸收係數。線上光學檢測系統可量測與分析準分子雷射退火鍺膜之再結晶特性和量測鍺膜融化時間,因此可以容易製作大粒徑之多晶鍺以及提高其製程良率。


An in-situ real-time time-resolved optical reflectivity and transmissi vity (TRORT) monitoring system combining two CW He-Ne laser, a fast digital oscilloscope and three photodiodes is developed for monitoring the melt-phase duration and examine the melting and crystallization behavior during XeF excimer laser annealing(ELA) and use Transmission Electron Microscopy(TEM) to analyze crystallization mechanisms of poly-Si in this study.

We use ELA to crystallize amorphous germanium on difference absorption coefficient film(SiON).The grain size of germanium will increase to 10 μm. The grain size measurement of difference absorption coefficient film is compared and the germanium is different in melt-phase duration.The grain size is judged must match in melt-phase duration and absorption coefficient of SiON films.

Using TRORT system can examine the melting and crystallization behavior, and measure the melt-phase duration. This technique provides a simple approach for fabrication large-grained poly-Ge during ELA and enhances the high yield during in-line large area flat panel displays fabrication.

摘要 I Abstract II 誌謝 III 目錄 IV 圖引索 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究背景與目的 2 第二章 文獻探討 5 2.1準分子雷射結晶法 6 2.1.1 矽膜經雷射照射之再結晶區域 7 2.1.2 表面粗糙度效應 8 2.2線上光學檢測技術 10 2.2.1 Time-Resolved Optical Transmission(TROT),Time-Resolved Optical Reflection(TROR) 11 2.2.2 TROT/TROR相關應用 11 2.3矽膜再結晶之相關熱傳導率 14 2.4雷射退火於鍺膜之相關應用 14 2.4.1不同熱傳導率基板對鍺膜再結晶影響 16 2.4.2 TROR/TROT 於再融化現象 18 2.4.3鍺膜於TROR之現象 19 2.5半透光膜熱滯留層之影響 21 2.6駐波現象 22 2.7實驗相關設備 23 2.7.1準分子雷射機台 23 2.7.2線上光學檢測系統 24 2.7.3準分子雷射退火流程 27 2.8薄膜晶粒特性分析方法 28 2.8.1掃描式電子顯微鏡分析 28 2.8.2原子力顯微鏡分析 28 2.8.3穿透式電子顯微鏡分析 29 2.8.4拉曼光譜分析 29 第三章 實驗流程 31 3.1退火試片準備 32 3.1.1玻璃基板清洗 32 3.1.2 以PECVD 沉積a-Si 34 3.1.3 以PECVD 沉積 SiON and SiO2 36 3.1.4 Sputtering 沉積a-Ge 38 3.1.5除氫 41 3.2準分子雷射退火試片 41 3.3試片分析之實驗過程 42 3.3.1試片斷面分析 42 3.3.2表面粗糙度量測 44 3.3.3晶粒尺寸 44 3.3.4結晶品質與組成 46 第四章 矽膜再結晶成長 47 4.1雷射照射方向與結晶位置之關係 48 4.2多晶矽膜成長方向與波形之驗證 51 4.3均質成核之影響 55 4.4以2D方向分析結晶機制 57 4.5正背打粗糙度之量測 58 第五章 鍺膜再結晶之分析 62 5.1鍺膜與雷射能量之關係 62 5.2不同吸收係數對融化時間與晶粒大小之影響 70 5.2.1晶粒尺寸之驗證 77 5.2.2結晶性之評估 78 5.3結果討論 84 第六章 結論與未來研究方向 86 6.1結論 86 6.2未來研究方向 88 參考文獻 89

[1] 陳佳斌,”線上光學檢測技術於準分子雷射退火矽膜之再結晶特性研究”,國立台灣科技大學機械工程學系 碩士論文,中華民國九十四年。
[2] 李箕,”以線上光學監控技術量測與分析準分子雷射退火之低溫多晶矽製
程參數研究”,國立台灣科技大學機械工程學系 碩士論文,中華民國九十五年。
[3] 丁勝懋 編著,”雷射工程導論”,307-313,187-197,271-295頁,中央圖書
出版社,2000。
[4] 劉侑宗,”準分子雷射誘發熱滯留輔助結晶技術”,國立台灣科技大學電子工
程系 碩士論文,中華民國 九十二年六月。
[5] J. S. Im,H. J. Kim,”On the super lateral growth phenomenon observed in
excimer laser-induced crystallization of thin Si films”,Appl. Phys. Lett. 64(1994)
17.
[6]J. S. Im,H. J. Kim,M.O. Thompson,”Phase transformation mechanisms involved in excimer laser crystallization of amorphous sillicon films”,Appl.Phys. Lett. 63 (1993)14.
[7] R. S. Sposili,”Crystalline Silicon Thin Film For Thin-Film Transistor
Applications Via Excimer Laser Irradiation”, Columbia University,2001.
[8] 林文全,”KrF準分子雷射再結晶非晶矽薄膜應用於太陽能電池之研究”,國
立成功大學機械工程學系 碩士論文,中華民國九十一年。
[9] K. Suzuki,M. Takahashi,M. Saitoh,”Influences of hydrogen contents in
precursor Si filmto excimer laser crystallization”,Appl. Phys. A 69(1999).
[10] A. Mimura,Y. Shinagawa,G. Kawachi,K. Onisawa,T. Minemura,M. Hara,
T. Ishida,T. Takeda,”Flat and Large Poly-Si Grains by a Continuous Process of
Plasma-Enhanced Chemical Vapor Deposition of a-Si and Its Direct Laser
Crystallization ”, J. Appl. Phys.39(2000)779-781.
[11] L. Mariucci ,A. Pecora ,G. Fortunato,C. Spinella,C.
Bongiorno,”Crystallization mechanisms in laser irradiated thin amorphous
silicon films”,Thin Solid Films 427 (2003) 91–95
[12] S.J. Moon,”pulsed laser annealing of silicon thin film in application to thin film
transistors”,Engineering-Mechanical Engineering,University of Aalifornia,
Berkeley,2001.
[13] O. Yavas,N. Do,A. C. Tam,P. T. Leung,,W. P. Leung,,H. K. Park,C. P.
Grigoropoulos,J. Boneberg,P. Leiderer,”Temperature dependence of optical
protical properties for amorphous silicon at wavelengths of 632.8 and 752 nm”,
Opt. Lett.18(1993)7.
[14] E. Fogarassy,S. de Unamuno,B. Prevot,T. Harrer,S. Maresch,” Experimental
and numerical analysis of surface melt dynamics in 200 ns-excimer laser crystal-
lization of a-Si films on glass”,Thin Solid Films 383(2001).
[15] K. Murakami,K. Takita,K. Masuda,”Measurement of lattice temperature during
pulse-laser annealing by time-dependent optical reflect- ivity ”,J. Appl. Phys.
20(1981)867-870,.
[16] D. H. Auston,C. M. Surko,T. N. C. Venkatesan,R. E. Slusher,
J. A. Golovchenko,”Time-resolved reflectivity of ion-implanted silicon during laser annealing”,Appl . Phy . Lett .33(1978)5.
[17] F. C. Voogta,R. Ishihara,“Melting and crystallization behavior of low-pressure
chemical-vapor-deposition amorphous Si films during excimer-laser annealing”,
Appl . Phy . Lett .95(2004) 5.
[18] M.O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy , J. M. Poate,
D. C. Jacobson,A. G. Cullis,N. G. Chew,”Melting Temperature and Explosive
Crystallization of Amorphous Silicon during Pulsed Laser Irradiation”, Phys.
Rev. Lett. 52(1984)26.
[19] R. Ishihara and M. Matsumura, “A Novel Double-pulse Excimer –Laser
Crystallization Method of Silicon Thin-Film”, Jpn. J. Appl. Phys. 34
(1995)3976
[20] Y. Shao, F. Spaepen, and D. Turnbull ” An Analysis of the Formation of Bulk
Amorphous Silicon from the Melt”,Metallurgical and Materials Transactions,
JULY (1998),pp1825~1828
[21] Seung-Jae Moon、Minghong Lee、Costas P. Grigoropoulos” Heat Transfer and
PhaseTransformations in LaserAnnealing of Thin Si Films”,Journal of Heat
Transfer,pp253~246,APRIL 2002
[22]江俊旺,矽微熱電堆之結構設計與研製 國立雲林科技大學電子與資訊工程
研究所 碩士論文,中華民國九十年
[23] H.WADA and T. KAMIJOH “Thermal conductivity of amorphouse silicon”
Appl . Phy .35 (1996) L648~L650
[24] C. K. Ong, E. H. Sin, and H. S. Tan ”Heat-flow calculation of pulsed excimer
ultraviolet laser's melting of amorphous and crystalline silicon surfaces” Optical Society of America,No. 5/May 1986
[25] M.G. Burzo、P. L. Komarov、P. E. Raad,”A Study of the Effect of
Surface Metalization on Thermal Conductivity Measurements by the Transient
Thermo-Reflectance Method”,Metallurgical and Materials Transactions,
December 2002, Vol. 124 ,pp1009~1018
[26] B. Nait-Ali , K. Haberko , H. Vesteghema, J. Absi , D.S. Smith “Thermal
conductivity of highly porous zirconia”,Journal of the European Ceramic
Society 26 (2006),pp3567~3574
[27] N. Chaoui ,J. Siegel ,J. Solis, and C. N. Afonso,”Reflectivity of crystalline Ge
and Si at the melting temperature measured in real time with subnanosecond
temporal resolution”,J. Appl. Phys., Vol. 89, No. 7, 1 April 2001
[28] http://140.120.11.120/user/ysuen/device,半導體物理簡介
[29] J. Siegel,J. Solis,C. N. Afonso,C. Garcia,”Bulk solidification and recalescence
phenomena in amorphous Ge films upon picosecond pulsed laser irradiation”,
J.Appl. Phys., Vol. 80, No. 12, 15 December 1996
[30] G. E. Jellison, Jr. and D. H. Lowndes, GaAs under Intense Ultrafast
Excitation: Response of the Dielectric Function Appl. Phys. Lett. 51, 352
(1987).
[31] F. Vega, R. Serna, C. N. Afonso, D. Bermejo, and G. Tejeda, “On the origin of recalescence in amorphous Ge films melted with nanosecond laser pulses”,J. Appl. Phys. 75, 7287(1994)
[32] J. Boneberg and P. Leiderer,”On the Interpretation of Time-Resolved Surface
Reflectivity Measurements during the Laser Annealing of Si Thin Films” ,phys.
stat. sol. 166(1998) 643,.
[33] J. Siegel,J. Solis,C. N. Afonso,”Recalescence after solidification in Ge films
melted by picosecond laser pulses”, Appl . Phy . Lett . 75(1999) 8.
[34] J. Solis,J. Siegel,C. N. Afonso,”Real-time optical measurements with pico-
second resolution during laser induced transformations “,Review of Scientific
Instrument .71(2000)4.
[35] F. Vegaa,N. Chaouib,J. Solis,J. Armengol,C. N. Afonso,Optical evidence
for a self-propagating molten buried layer in germanium films upon nanosecond
laser irradiation
[36] J. Armengol, F. Vega, N. Chaoui, J. Solis, and C. N. Afonso, J.”Recalescence
after bulk solidification in germanium films melted by ns laser pulses”,Appl.
Phys.93, 1505 (2003)
[37] 莊淳鈞、葉文昌、郭啟全、鄭正元,“即時矽膜穿透率反射率量測準分子雷
射退火矽膜之矽膜固化時間”,2005台灣光電科技研討會,國立成功大學,
中華民國九十四年十二月十六~十七日。
[38] http://www.ndl.org.tw/cht/ndlcomm/P5_3/30.htm# ,邱燦賓,”微影製程
之數學模式” 國家奈米元件實驗室。
[39] 李嘉平,”濺鍍沉積薄膜孻料及分析”,財團法人自強工業科學基金會,電子
人才培訓計畫,中華民國九十三年六月。
[40] http://www.ntmdt.com/
[41] http://pilot.mse.nthu.edu.tw/micro/chap11/ch11-2-4.html
[42] 林世傑,”低溫多晶矽之製作與特性分析”,國立中央大學光電科學研究所 碩
士論文,中華民國九十二年六月。
[43] R. J. Kobliska and S. A. Solin”Raman Scattering from Phonons in Polymorphs of
Si and Ge”,Physical Review Letters,Vol 29,Number11,11 September 1972

QR CODE