簡易檢索 / 詳目顯示

研究生: 陳俞廷
Yu-Ting Chen
論文名稱: 三相直流無刷馬達驅動電路應用於多功率風機馬達之研究
Research of Three-Phase DC Motor Driver Applied to Multi-Power Motor
指導教授: 蕭鈞毓
Jyun-Yu Siao
蘇順豐
Shun-Fong Su
口試委員: 謝秀明
Siou-Ming Sie
蕭弘清
Hong-Cing Siao
王順源
Shun-Yuan Wang
楊念哲
Nian-Jhe Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 數位訊號處理器脈波寬度調變空間向量脈波寬度調變轉速閉迴路霍爾感測器多功率電機
外文關鍵詞: brushless DC motor, digital Signal Processor, hall sensor, speed closed loop control, space vector pulse width modulation, multi-power fan motor
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業4.0及工業自動化備受提倡之後,電機的使用逐年成長,電機驅動器(Motor Driver)的需求也隨之上升,一般市售電機皆需搭配符合其規格之驅動器。在電機應用中,大量使用的風機因各種因素損壞或更換設置地點時,需更換不同功率的風機,都需要將驅動器拆下進行維護或更換,尤其在風機密集的廠房內,更換的時間成本及費用將會是一大問題。因此本研究基於風機常用之三相直流無刷電機(Three-phase Brushed DC motor, BDCM)設計出一驅動電路能夠應用於多功率範圍的電機,除了能夠減少電機損壞時更換的時間之外,在因應更換不同功率的電機時,也能夠判別合適該電機之操作範圍進行運作,不須特別經過手動調整或更換,改善長久以來必須將電機與驅動器同步拆換的技術與成本問題,能夠大量減少檢修人力與更換需求。
    本文對於風機常用之三相直流無刷電機驅動器提出一種新的多功率電機驅動器設計,透過數位訊號處理器(Digital Signal Processor, DSP)提供的訊號與程式的判別進行軟體架構的設計,利用三相變頻器(Three-phase Inverter)開關切換訊號進行設計,選用空間向量脈波寬度調變(Space Vector Pulse Width Modulation, SVPWM)為本研究之控制策略,並採用霍爾感測器(Hall Sensor)訊號進行轉子位置回授,提供回授轉速以利轉速閉迴路的設計,針對各功率電機以不同轉速運行時的參數與波形進行驗證與分析,最後將判別結果以淺顯易懂的燈號顯示。整體系統研發實作結果,驗證本文所提出的三相直流無刷馬達驅動電路應用於多功率風機馬達之研究達成預期設立之目標,對於未來智慧型驅控系統的研究,提供了新的可行方案及持續發展方向。


    After Industry 4.0 and industrial automation have been advocated, the use of electric motors has been growing year by year, and the demand for motor drivers has also increased.In motor applications, a large number of fans used due to various factors damage or change the location of the installation, the need to replace the fan of different power, it is necessary to remove the driver for maintenance or replacement, especially in the fan dense factory, the time cost and cost of replacement will be a major problem. Therefore, this study is based on the three-phase Brushless DC motor (BLDC) commonly used in wind turbines to design a driver that can be applied to a wide range of multi-power motors, in addition to reducing the time to replace the motor when it is damaged, in response to the replacement of different power motors, it can also be judged suitable for the operation of the motor range, without the need for special manual adjustment or replacement.This will improve the technical and cost problems that have long been associated with the simultaneous disassembly and replacement of motors and drives, and will greatly reduce the need for inspection and replacement.
    In this paper, we propose a new multi-power motor drive design for a three-phase BLDC driver commonly used in wind turbines, using a digital signal processor (DSP) to provide the signal and program discrimination for the software architecture design, and a three-phase inverter switching signal for the design. The design is based on the space vector pulse width modulation (SVPWM) control strategy, and the Hall sensor signal is used for rotor position feedback to provide the feedback speed for the closed loop design. The system is designed to verify and analyze the parameters and waveforms of each power motor at different speeds, and finally display the results with easy-to-understand LED signals. The results of the overall system research and development have verified that the proposed three-phase BLDC drive circuit for multi-power motors has achieved the expected objectives, and has provided a new feasible solution and continuous development direction for future research on intelligent drive control systems.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 相關文獻回顧 3 1.3 研究流程與章節架構 11 第二章 三相永磁直流無刷電機結構 14 2.1 前言 14 2.2 三相永磁直流無刷電機結構與特性 14 2.2.1 依照轉子、定子安裝配置分類 17 2.2.2 依照轉子磁鐵安裝方式分類 18 2.2.3 依照馬達繞組接線方式分類 21 2.3 三相永磁直流無刷電機數學模型 23 2.4 座標軸轉換 27 2.4.1 q軸對正a軸之座標軸轉換 28 2.4.2 d軸對正a軸之座標軸轉換 31 2.5 三相永磁直流無刷電機選用 36 2.6 本章結語 37 第三章 三相直流無刷多功率風機馬達控制策略 38 3.1 前言 38 3.2 三相變頻器原理 38 3.2.1 直流無刷電機驅動原理 39 3.2.2 霍爾感測器原理 39 3.2.3 脈波寬度調變原理 41 3.2.4 三相變頻器規格選用 42 3.2.5 數位訊號處理器規格選用 43 3.3 三相永磁直流無刷電機控制策略 45 3.3.1 空間向量脈波寬度調變控制策略 45 3.3.2 120°六步方波驅動控制策略 52 3.3.3 三相永磁直流無刷電機控制策略選用 54 3.4 轉速控制策略 54 3.4.1 緩啟動控制策略 54 3.4.2 霍爾訊號回授控制策略 55 3.4.3 轉速開迴路控制策略 55 3.4.4 轉速閉迴路控制策略 56 3.5 本章結語 57 第四章 多功率風機馬達驅動系統研製 58 4.1 前言 58 4.2 多功率風機驅動系統架構大綱 58 4.3 多功率風機驅動系統軟體架構 59 4.3.1 主程式 59 4.3.2 中斷副程式 60 4.4 多功率風機驅動系統硬體架構 70 4.4.1 霍爾訊號判讀電路 70 4.4.2 多功率馬達判讀燈號電路 70 4.5 本章結語 71 第五章 多功率風機馬達驅動系統實驗結果 72 5.1 前言 72 5.2 DSP提供至三相變頻器之開關訊號 72 5.3 霍爾感測器訊號及燈號判讀 75 5.4 轉速回授與閉迴路控制策略實現 77 5.5 偵測判別模式判斷區間設定 82 5.6 各功率操作模式及燈號判讀 83 5.7 本章結語 106 第六章 結論與未來研究方向 107 6.1 結論 107 6.2 未來研究改善建議 108 參考文獻 109

    [1] Grand View Research, "Brushless DC Motor Market Size, Share & Trends Analysis Report 2018-2028," Retrived from:https://www.grandviewresearch.com/industry-analysis/brushless-dc-motors-market (accessed May 25, 2022)
    [2] Technavio, "Brushless DC Motors Market by Product, End-user, and Geography - Forecast and Analysis 2021-2025," Retrived from:https://www.technavio.com/report/brushless-dc-motors-market-industry-analysis (accessed May 27, 2022)
    [3] ITIS產業分析:台灣高效能馬達產業發展與機會。取自:https://www.mirdc.org.tw/FileDownLoad/IndustryNews/2015323134858294.pdf (accessed June 3, 2022)
    [4] Tech Web:小型馬達的結構。2021年10月27日,取自:https://techweb.rohm.com.tw/knowledge/motor/basics/basics-01/90
    [5] 黃銘(2010),電工機械-升學寶典,新北市,台科大圖書股份有限公司出版。
    [6] 王順忠、陳秋麟 (2013),電機機械基本原理,台北市,東華出版社。
    [7] H. Wang, K. Lu, D. Wang and F. Blaabjerg, "Online Identification of Intrinsic Load Current Dependent Position Estimation Error for Sensorless PMSM Drives," in IEEE Access, vol. 8, pp. 163186-163196, 2020, doi: 10.1109/ACCESS.2020.3019690.
    [8] S. A. Saleh and A. Rubaai, "Extending the Frame-Angle-Based Direct Torque Control of PMSM Drives to Low-Speed Operation," in IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 3138-3150, 2019, doi: 10.1109/TIA.2018.2890060.
    [9] 黃仲欽(2021),電機機械理論,台北市,國立臺灣科技大學。
    [10] 常州宇拓電機,42型三相永磁直流無刷電機。取自:https://shopee.tw/product/164412744/10276947233?smtt=0.12271143-1654198744.4 (accessed May 22, 2022)
    [11] Kolano, K.; Drzymała, B.; Gęca, J., "Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors," Energies, vol 14, no. 13: 3845, 2021.
    [12] M. Murali and R. Arulmozhiyal, "Investigation on Modeling and Simulation BLDC Motor Fed Universal Actuation System," Rev. int. métodos numér. cálc. diseño ing., vol. 37, issue 1, 2021, doi: 10.23967/j.rimni.2020.12.001
    [13] M. Ebadpour, N. Amiri and J. Jatskevich, "Fast Fault-Tolerant Control for Improved Dynamic Performance of Hall-Sensor-Controlled Brushless DC Motor Drives," in IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 14051-14061, 2021, doi: 10.1109/TPEL.2021.3084921.
    [14] Q. Li, H. Huang, & B. Yin, "The Study of PWM Methods in Permanent Magnet Brushless DC Motor Speed Control System," in International Conference on Electrical Machines and Systems, Wuhan, China, pp. 3897-3900, 2008.
    [15] C. Zhang, M. Takongmo and J. Salmon, "High-Quality PWM Scheme for High-Speed Electric Drives," in IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1228-1233, 2022, doi: 10.1109/TPEL.2021.3108667.
    [16] P. Mishra, A. Banerjee and M. Ghosh, "FPGA-Based Real-Time Implementation of Quadral-Duty Digital-PWM-Controlled Permanent Magnet BLDC Drive," in IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1456-1467, June 2020, doi: 10.1109/TMECH.2020.2977859.
    [17] S. B. Santra, A. Chatterjee, D. Chatterjee, S. Padmanaban and K. Bhattacharya, "High Efficiency Operation of Brushless DC Motor Drive Using Optimized Harmonic Minimization Based Switching Technique," in IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2122-2133, March-April 2022, doi: 10.1109/TIA.2022.3146212.
    [18] L. Yang, Z. Q. Zhu, L. Gong and H. Bin, "PWM Switching Delay Correction Method for High-Speed Brushless DC Drives," in IEEE Access, vol. 9, pp. 81717-81727, 2021, doi: 10.1109/ACCESS.2021.3085212.
    [19] 馬唯科技有限公司(2018),基礎數位訊號處理TMS320F28335參考使用手冊。
    [20] 陳威智(2011),直流無刷馬達驅動控制晶片研製,台南市,國立成功大學。
    [21] 陳冠宇、陳昱仁、陳偉中、周敬堂(2018),TMS320F28069平台的操作練習。
    [22] Texas Instruments, "Technical Reference Manual TMS320x2833x TMS320x2823x," Literature Number:SPRUI07, March, 2020.
    [23] X. Mo, K. Huang, H. Fan, H. Wu, W. Lv and L. Chen, "Segmented Multi-mode Modulation Algorithm Based on Synchronized SVPWM for Rail Transit Traction Motor," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS, pp. 1-4), 2019, doi: 10.1109/ICEMS.2019.8922033.
    [24] Farazdaq Rafeeq Yasien & Roaa Abbas mahmood, "Design New Control System for Brushless DC Motor Using SVPWM," International Journal of Applied Engineering Research, vol. 13, no. 1 pp. 582-589, 2018.
    [25] Z. Li, Y. Guo, J. Xia, Y. Duan and X. Zhang, "Modified Synchronized SVPWM Strategies to Reduce CMV for Three-Phase VSIs at Low Switching Frequency," in IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 5245-5256, Sept.-Oct. 2020, doi: 10.1109/TIA.2020.3009216.
    [26] Keliang Zhou & Danwei Wang, Member, "Relationship Between Space-Vector Modulation and Three-Phase Carrier-Based PWM: A Comprehensive Analysis," IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 186-196, 2002.
    [27] S. Pradeepa, S. Kumar P. and G. Prakash, “Adoption of SVPWM Technique to CSI and VSI,” 2018 3rd International Conference for Convergence in Technology (I2CT, pp. 1-6), 2018.
    [28] L. Wu, J. Li, Y. Lu and K. He, "Strategy of Synchronized SVPWM for Dual Three-Phase Machines in Full Modulation Range," in IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3272-3282, March 2022, doi: 10.1109/TPEL.2021.3111164.
    [29] H. -J. Cho, Y. -C. Kwon and S. -K. Sul, "Time-Optimal Voltage Vector Transition Scheme for Six-Step Operation of PMSM," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5724-5735, May 2021, doi: 10.1109/TPEL.2020.3028861.
    [30] Y. Lee and J. Kim, "Analysis of the Three-Phase Inverter Power Efficiency of a BLDC Motor Drive Using Conventional Six-Step and Inverted Pulsewidth Modulation Driving Schemes," in Canadian Journal of Electrical and Computer Engineering, vol. 42, no. 1, pp. 34-40, 2019, doi: 10.1109/CJECE.2018.2885351.
    [31] K. Vinoth Kumar, Prawin Angel Michael, Joseph P. John & Dr. S. Suresh Kumar, "Simulation and Comparison of SPWM and SVPWM Control for Three Phase Inverter," ARPN Journal of Engineering and Applied Sciences, vol. 5, no. 7, 2010.
    [32] Waheed Ahmed & Syed M Usman Ali, "Comparative Study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) Based Three Phase Voltage Source Inverters for Variable Speed Drive," 2013 IOP Conference Series:Materials Science Engineering, 51 012027.
    [33] J. Sabarad and G. H. Kulkarni, "Comparative Analysis of SVPWM and SPWM Techniques for Multilevel Inverter," 2015 International Conference on Power and Advanced Control Engineering (ICPACE, pp. 232-237), 2015.
    [34] Y. Huang, Y. Xu, Y. Li, G. Yang and J. Zou, "PWM Frequency Voltage Noise Cancelation in Three-Phase VSI Using the Novel SVPWM Strategy," in IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8596-8606, 2018.
    [35] P. M. de Almeida, R. L. Valle, P. G. Barbosa, V. F. Montagner, V. Ćuk and P. F. Ribeiro, "Robust Control of a Variable-Speed BLDC Motor Drive," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 1, pp. 32-41, Jan. 2021, doi: 10.1109/JESTIE.2020.3035055.
    [36] 王曉明 (2009),電動機的DSP控制-TI公司DSP應用,中華人民共和國:北京航空航天大學出版社。
    [37] 謝青紅、張筱荔 (2009),TMS320F2812DSP原理及其在運動控制系統中的應用,中華人民共和國:北京電子工業出版社。
    [38] APM Reza 0& MH Ali, "An Optimized SVPWM Switching Strategy for Three-level NPC VSI and a Novel Switching Strategy for Three-level Two-quadrant Chopper to Stabilize the Voltage of Capacitors," Energy, vol. 35, Issue 12, pp. 4917-4931, 2010.
    [39] Donsión, M. P., "Permanent Magnet Synchronous Motors: Influence of the Parameters on the Control of a PMSM," The International journal for computation and mathematics in electrical and electronic engineering (COMPEL), vol. 27, no. 4, pp. 946-957, 2008.
    [40] H. Seol, J. Lim, D. Kang, J. S. Park & J. Lee, "Optimal Design Strategy for Improved Operation of IPM BLDC Motors With Low-Resolution Hall Sensors," in IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9758-9766, 2017.
    [41] 江立翔(2021),基於無轉子角位置感測器之衝擊式直流無刷電動手工具驅動策略研究,台北市,國立臺灣科技大學。
    [42] 張育誠(2021),直流無刷電動手工具機兩段式精確轉矩控制策略之研製,台北市,國立臺灣科技大學。
    [43] 李冠諭(2021),高科技廠房風機濾網機組之無感測器智慧監控系統研製,台北市,國立臺灣科技大學。
    [44] 鄭義威(2020),無感測器三相永磁同步電動機驅控系統於風機濾網積塵監測之應用研究,台北市,國立臺灣科技大學。
    [45] Texas Instruments, "SN7414 data sheet, product information and support."
    [46] 陳瑞麟(2021),空間向量調變原理,台北市,國立臺灣科技大學。
    [47] Stefanos N. Manias, Power Electronics and Motor Drive Systems. United Kingdom: Elsevier, 2017.
    [48] 劉玫玲、吳福正(2013),設計高效率低成本直流無刷馬達驅動器將小家電融入節能減碳之研究,標準檢驗局台南分局,經濟部標準檢驗局102年度自行研究計畫。
    [49] P. Y. Janakiram, A. Mitra & S. Bhat, "Study and Analysis of the Performance of Grid-Connected Multi-PMBLDC Motor Drive System," 2019 International Conference on Energy and Power Engineering (ICEPE), pp. 1-6, 2019.
    [50] J. -H. Yoo and T. -U. Jung, "A Study on Output Torque Analysis and High Efficiency Driving Method of BLDC Motor," 2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC), pp. 1-4, 2020, doi: 10.1109/CEFC46938.2020.9451336.
    [51] C. N. Narasimha Rao and G. DurgaSukumar, "Analysis of Torque Ripple in Vector Control of BLDC Motor using SVPWM Technique," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 519-523, 2020, doi: 10.1109/ICECA49313.2020.9297558.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE