簡易檢索 / 詳目顯示

研究生: 蕭傑夫
Chieh-Fu Hsiao
論文名稱: 內藏式永磁同步電動機驅動系統的適應性逆控制器研製
Design and Implementation of Adaptive Inverse controller for Interior Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
李永勳
Yuang-Shung Lee
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 101
中文關鍵詞: 內藏式永磁同步電動機預測電流控制器適應性逆控制器數位訊號處理器
外文關鍵詞: interior permanent magnet synchronous motor, predictive current controller, adaptive inverse controller, digital signal processor.
相關次數: 點閱:200下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討內藏式永磁同步電動機驅動系統的研製。首先,提出預測型電流控制器的設計。經由偵測定子電流及電流斜率,依照所定義的成本函數,決定變頻器的開關切換狀態。此方法運算簡單,不需要利用太多電動機的參數,即可達到良好的電流追蹤效果。
    其次,本文提出適應性逆控制的設計,以改善內藏式永磁同步電動機的閉迴控制性能,包括:快速的暫態響應、良好的干擾拒斥響應及追蹤能力。所提方法可以分別應用在內藏式永磁同步電動機控速及定位系統。
    最後,使用德州儀器公司所生產的TMS-320LF-2407數位訊號處理器,達成電流控制器、速度控制器及位置控制器等計算。硬體電路甚為簡單。實驗結果證明本文所提的方法可有效地提升內藏式永磁同步電動機驅動系統的性能。


    This thesis investigates the design and implementation of an interior permanent magnet synchronous motor drive system. First, a predictive current controller is proposed. By detection the stator currents and current slopes, the switching states of the inverter can be determined according to the defined cost function. The proposed method is simple and doesn't require many parameters of the motor. In addition, the tracking ability of the predictive current controller is satisfactory.
    Next, an adaptive inverse controller is proposed to improve the performance of the closed-loop interior permanent magnet synchronous motor drive system, including fast transient responses, good load disturbance responses and tracking ability. Moreover, The proposed method can be used for an adjustable speed system and a position control system.
    A digital signal processor, TMS-320LF-2407, made by Texas Instruments Company, is used to execute current controller, speed controller, and position controller. As a result, the hardware is very simple. Experimental results show the proposed method can effectively improve the performance of an interior permanent magnet synchronous motor drive system.

    目錄 中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 IX 符號索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的及貢獻 5 1.4 論文大綱 6 第二章 永磁同步電動機 7 2.1 簡介 7 2.2 結構及特性 7 2.3 數學模式 13 第三章 預測型控制器設計 21 3.1 簡介 21 3.2 預測型電流控制器設計 21 第四章 適應性逆控制器設計 29 4.1 簡介 29 4.2 基本原理 30 4.3 最小平方適應性演算法 33 4.4 適應性逆控制應用於控速系統 38 4.5 適應性逆控制應用於定位系統 41 第五章 系統研製 43 5.1 簡介 43 5.2 硬體電路 44 5.2.1變頻器及其驅動電路 44 5.2.2電壓及電流偵測電路 48 5.2.3保護電路 51 5.3 軟體程式設計 52 5.3.1簡介 52 5.3.2數位訊號處理器架構 52 5.3.3主程式流程 55 5.3.4中斷服務程式 57 第六章 實測波形 62 6.1 簡介 62 6.2 實測結果 63 第七章 結論與未來研究方向 93 參考文獻- 94

    [1]P. C. Sen, “Electric motor drives and control - past, present, and future,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 562-575, Dec. 1990.
    [2] T. A. Lipo, “Recent progress in the development in solid-state AC motor drives,” IEEE Transactions on Power Electronics, vol. 3, no. 2, pp. 105-117, Apr 1988.
    [3] C. Lascu and A. M. Trzynadlowski, “Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive,” IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 170-177, Sep./Oct. 2004.
    [4] L. Ying and N. Ertugrul, “A novel, robust DSP-based indirect rotor position estimation for permanent magnet AC motors without rotor saliency,” IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 539-546, Mar. 2003.
    [5] L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully FPGA-based sensorless control for synchronous AC drive using an extended kalman filter ,” IEEE Transactions on Industry Electronics, vol. 59, no. 10, pp. 3908-3918, Oct. 2012.
    [6] C. Mastrorocostas, I. Kioskeridis, and N. Margaris, “Thermal and slip effects on rotor time constant in vector controlled induction motor drives,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 495-501, Mar. 2006.
    [7] M. J. Melfi, S. D. Rogers, S. Evon, and B. Martin, “Permanent-magnet motors for energy savings in industrial applications,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1360-1366, Sep./Oct. 2008.
    [8] C. S. Jin, D. S. Jung, K. C. Kim, Y. D. Chun, H. W. Lee, and J. Lee, “A study on improvement magnetic torque characteristics of IPMSM for direct drive washing machine,” IEEE Transactions on Magnetics, vol. 45, no. 6, pp. 2811-2814, June 2009.
    [9] A. Consoli, G. Scarcella, and A. Testa, “Industry application of zero speed sensorless control techniques for PM synchronous motors,”IEEE Transactions on Industry Applications, vol. 37, no. 2, pp. 513-521, Mar./Apr. 2001.
    [10] T. Tudorache and I. Trifu, “Permanent-magnet synchronous machine cogging torque reduction using a hybrid model,” IEEE Transactions on Magnetic, vol. 48, no. 10, pp. 2627-2632, Oct. 2012.
    [11] Y. Yu, C. Bi, P. N. Hla, Q. Jiang, S. Lin, N. L. H. Aung, and A. A. Mamun, “Incline unbalanced magnetic pull induced by misalignment rotor in PMSM,” IEEE Transactions on Magnetics, vol. 49, no. 6, pp. 2709-2714, June 2013.
    [12] E. C. Lovelace, T. M. Jahns, J. H. Lang, “A saturating lumped parameter model for an interior PM synchronous machine,” IEEE Transactions on Industry Applications, vol. 38, no. 3, pp. 645-650, May./June 2002.
    [13] K. Kurihara and M. A. Rahman “High-efficiency line-start interior permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789-796, July 2004.
    [14] T. Saito, “Magnetization process in Co-Zr-B permanent-magnet materials,” IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2919-2921, July. 2004.
    [15] C. H. Zhao, N. Yang, and X. W. Wang, “The structure optimization of IPM synchronous machine,” IEEE IECON-2007, pp. 1092-1096, 2007.
    [16] P. Zhou, W. N. Fu, D. Lin, S. Stanton, and Z. J. Cendes, “Numerical modeling of magnetic devices,” IEEE Transactions on Magnetics, vol. 40 no.4, pp. 1803-1809, July 2004.
    [17] C. C. Hwang and Y. H. Cho, “Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 37, no.4, pp. 3021-3024, July 2001.
    [18] V. Z. Kukolj, W. L. Soong, and N. Ertugrul, “Iron loss reduction in an interior PM automotive alternator,” IEEE Transactions on Industry Applications, vol. 42, no.6, pp. 1478-1486, Nov./Dec. 2006.
    [19] D. F. Chen and T. H. Liu, “Implementation of a novel matrix converter PMSM drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 863-875, July 2001.
    [20] J. Y. Chai, Y. H. Ho, Y. C. Chang, and C. M. Liaw, “On acoustic-noise -reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 1295-1309, Mar. 2008.
    [21] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Fuzzy-logic-controller- based cost-effective four-switch three-phase inverter-fed IPM synchronous motor drive system,” IEEE Transactions on Industrial Electronics, vol. 42, no. 1, pp. 21-30, Jan./Feb. 2007.
    [22] J. Hobraiche, J. P. Vilain, P. Macret, and N. Patin, “A new PWM strategy to reduce the inverter input current ripples,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 172-180, Jan. 2009.
    [23] D. Dujic, G. Grandi, M. Jones, and E. Levi, “A space vector PWM scheme for multifrequency output voltage generation with multiphase voltage-source inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1943-1955, May 2005.
    [24] K. Sun, Q. Wei, L.Huang, and K. Matsuse, “An overmodulation method for PWM-inverter-fed IPMSM drive with single current sensor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3395-3404, Oct. 2010.
    [25] S. A. Saleh and M. A. Rahman, “Development and testing of a new controlled wavelet-modulated inverter for IPM motor drives, ” IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 1339-1349, Apr. 2011.
    [26] B. K. Bose, “Modern Power Electronics and AC Drives,” Prentice Hall PTR, New Jersey, 2002.
    [27] M. N. Uddin and M. M. I. Chy, “A novel fuzzy-logic-controller-based torque and flux controls of IPM synchronous motor,” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 1220-1229, May/June 2010.
    [28] C. C. Kung and K. H. Su, “Adaptive fuzzy position control for electrical servodrive via total-sliding-mode technique,” IEE Proc.-Electr. Power Applicat, vol. 152, no. 6, pp. 1489-1502, Nov. 2005.
    [29] M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
    [30] J. L. Shi, T. H. Liu and Y. C. Chang, “Adaptive controller design for a sensorless IPMSM drive system with a maximum torque control,” IEE Proc.-Electr. Power Applicat, vol. 153, no. 6, pp. 823-833, Nov. 2006.
    [31] H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer ,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1171-1183, Feb. 2012.
    [32] H. Zhu, X. Xiao and Y. Li, “Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motor,”IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 871-877, Feb. 2012.
    [33] F. Morel, X. Lin-Shi, J.-M. Rétif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2715-2728, July 2009.
    [34] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai and D. Diallo “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Transactions on Energy Conversion, vol. 19, no. 1, pp. 109-115, Mar. 2004.
    [35] J. Rodríguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 495–503, Feb. 2007.
    [36] K. H. Kim, “Design and performance comparison of a stationary frame digital current control for a PM synchronous motor,” IEE Proceedings Electric Power Applications, vol. 150, no. 3, pp. 357-364, May 2003.
    [37] M. Kadota, S. Lerdudomsak, S. Doki, and S. Okuma, “A novel current control system of IPMSM operating at high speed based on model predictive control,” Proc. Power Conver. Conf., Apr.2-5 2007, pp. 1315-1319.
    [38] D. H. Yim, B. G. Park, R. Y. Kim and D. S. Hyun, “A predictive current control associated to EKF for high performance IPMSM drives,” Proc. IEEE APEC-2011, Mar. 6-11, 2011, pp. 1010-1016.
    [39] M. T. Akhtar, M. Abe and M. Kawamata, “Adaptive filtering with averaging based algorithm for feedforward active noise control systems,” IEEE Transactions on Signal Processing Letter, vol. 11, no. 6, pp. 557-560, 2004.
    [40] S. M. Sue, M. and C. T. Pan, “Voltage constraint tracking based field weakening control of IPM synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 340-347, Jan. 2008.
    [41] C. K. Lin, T. H. Liu, and C. H. Lo, “Sensorless interior permanent magnet synchronous motor drive system with a wide adjustable speed range,” IET Electric Power Applications, vol. 3, no. 2, pp. 133-146, Apr. 2009.
    [42] G. Foo and M. F. Rahman, “Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 395-403, Jan. 2010.
    [43] T. Senjyu, T. Shingaki and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 402-407, Apr. 2001.
    [44] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1264-1274, Sep./Oct. 2006.
    [45] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1905-1913, Aug. 2009.
    [46] Widrow, B., and Walach, E., “Adaptive inverse control a signal processing approach,” WILEY-IEEE press. 2008.
    [47] M. H. Costa, J. C. M. Bernudez, and N. J. Bershad, “Stochastic analysis of the filtered X LMS algorithm in systems with nonlinear secondary paths,” IEEE Transactions on Signal Processing, vol. 50, no.6, pp. 1327-1342, 2002.
    [48] A. M. Karshenas, M. W. Dunnigan, and B. W. Williams, “Adaptive inverse control algorithm for shock testing,” IEE Proceedings Control Theory Applications, vol. 147, no. 3, pp. 267-276, 2000.
    [49] Spectrum Digital, TMS320LF2407 Evaluation Module Technical Reference, 2000.
    [50] Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.
    [51] Texas Instruments, TMS320F/C240 DSP Controllers Peripherals Library and Specific Devices Reference Guide, 1999.

    QR CODE