簡易檢索 / 詳目顯示

研究生: 陳虎豪
Panji - Utomo
論文名稱: EVALUATION OF VARIOUS DESIGN METHODS FOR PREDICTING REINFORCEMENT TENSION WITHIN GEOSYNTHETIC-REINFORCED SOIL STRUCTURES
EVALUATION OF VARIOUS DESIGN METHODS FOR PREDICTING REINFORCEMENT TENSION WITHIN GEOSYNTHETIC-REINFORCED SOIL STRUCTURES
指導教授: 楊國鑫
Kuo-Hsin Yang
口試委員: 林宏達
Horn-Da Lin
劉家男
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 172
中文關鍵詞: Geosynthetic-Reinforced Soil StructureReinforcement TensionsForce-EquilibriumDeformation Based
外文關鍵詞: Geosynthetic-Reinforced Soil Structure, Reinforcement Tensions, Force-Equilibrium, Deformation Based
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Proper estimation of reinforcement tension is a key to evaluate the internal
stabilities of Geosynthetic-Reinforced Soil (GRS) structures. Prediction methods for reinforcement tension within GRS structures in current practice can be categorized into two approaches: force-equilibrium-based approach (i.e. earth-pressure-based method and limit equilibrium method) and deformation-based approach (i.e. Kstiffness method and finite element method). Until today, the effects of these methods have not been extensively examined and compared yet. In this paper, each of methods will firstly be introduced and the advantages and disadvantages of each method will be discussed. Afterward, two cases of GRS structures are used to examine the prediction of reinforcement tension by the aforementioned methods. Comparison results indicate the earth-pressure-based method and limit equilibrium over predict the
reinforcement tension. The finite element method agrees well with the measured data, but the K-stiffness method shows an obvious under prediction under surcharging conditions.


Proper estimation of reinforcement tension is a key to evaluate the internal
stabilities of Geosynthetic-Reinforced Soil (GRS) structures. Prediction methods for reinforcement tension within GRS structures in current practice can be categorized into two approaches: force-equilibrium-based approach (i.e. earth-pressure-based method and limit equilibrium method) and deformation-based approach (i.e. Kstiffness method and finite element method). Until today, the effects of these methods have not been extensively examined and compared yet. In this paper, each of methods will firstly be introduced and the advantages and disadvantages of each method will be discussed. Afterward, two cases of GRS structures are used to examine the prediction of reinforcement tension by the aforementioned methods. Comparison results indicate the earth-pressure-based method and limit equilibrium over predict the
reinforcement tension. The finite element method agrees well with the measured data, but the K-stiffness method shows an obvious under prediction under surcharging conditions.

CHAPTER 1:INTRODUCTION ...................................................... 1 1.1BACKGROUND ................................................................1 1.2 OBJECTIVE.................................................................6 1.3 THESIS OUTLINE ...........................................................6 CHAPTER 2: DESIGN METHODS for PREDICTING REINFORCEMENT LOADS ................ 8 2.1 BACKGROUND .............................................................. 8 2.2 GENERAL BEHAVIOR OF GRS STRUCTURES .......................................8 2.3 LATERAL EARTH PRESSURE METHOD ............................................9 2.3.1 Rankine Theory ........................................................12 2.3.2 Coulomb Theory ........................................................14 2.4 LIMIT EQUILIBRIUM METHOD ................................................16 2.5 FAILURE WEDGE METHOD ....................................................19 2.6 FINITE ELEMENT METHOD ...................................................21 2.7 K-STIFFNESS METHOD ......................................................22 2.8 LESCHINSKY AND BOEDEKER (1989) ..........................................27 CHAPTER 3: FULL-SCALE TESTING GRS WALL ..................................... 30 3.1 BACKGROUND ..............................................................30 3.2 PHYSICAL MODEL ..........................................................31 3.2.1 Wall configuration ....................................................31 3.2.2 Backfill Properties ...................................................33 3.2.2.1 Sand Characterization ...............................................33 3.2.2.2 Shear Strength Properties ...........................................34 3.2.3 Reinforcement .........................................................36 3.3 LOADING SYSTEMS .........................................................39 3.4 INSTRUMENTATION PROGRAM .................................................39 3.5 TESTS RESULT ............................................................40 3.5.1 Facing Displacement ...................................................40 3.5.2 Reinforcement strains .................................................42 3.5.3 Reinforcement Tensile Load ............................................44 CHAPTER 4: FINITE ELEMENT OF GRS WALLS ......................................45 4.1 OVERVIEW.................................................................45 4.2 FINITE ELEMENT SIMULATION ...............................................45 4.2.1 INITIAL SETTING .......................................................45 4.2.1.1 Plane Strain and Axisymmetric .......................................45 4.2.1.2 Element Shape .......................................................47 4.2.2 Hardening Soil Model ..................................................47 4.2.3 Reinforcement .........................................................57 4.2.4 Interface between Soil and Reinforcement ..............................60 4.2.5 Simulation Step........................................................60 4.2.5.1 Material Input Parameter ............................................61 4.2.5.2 Moving Formwork .....................................................62 4.2.5.3 Compaction ..........................................................62 4.2.5.4 Construction Sequence................................................63 4.3 FINITE ELEMENT RESULT ...................................................65 4.3.1 Deformation at Facing .................................................65 4.3.2 Reinforcement Strain and Failure Surface ..............................66 4.3.3 Tensile load at reinforcement .........................................69 CHAPTER 5: COMPARISON OF ALL DESIGN METHODS .................................72 5.1 OVERVIEW ................................................................72 5.2 CALCULATION PROCEDURE ...................................................72 5.2.1 Rankine’s Method......................................................72 5.2.2 Coulomb’s Method ....................................................74 5.2.3 Failure Wedge Method...................................................75 5.2.4 Limit Equilibrium Method...............................................76 5.2.5 K-stiffness Method ....................................................80 5.3 COMPARISON OF REINFORCEMENT LOAD ........................................81 5.4 THE EFFECT OF FACING ELEMENT ............................................88 5.5 FACTOR OF SAFETY from FINITE ELEMENT and LIMIT EQUILIBRIUM METHODS.......89 CHAPTER 6: CENTRIFUGE SLOPE MODEL............................................91 6.1 OVERVIEW.................................................................91 6.2 CENTRIFUGE TEST .........................................................91 6.2.1 Background ............................................................91 6.2.2 Centrifuge Model Layout................................................92 6.2.3 Backfill Properties ...................................................95 6.2.3.1 Sand Characterization................................................95 6.2.3.2 Shear Strength Under Triaxial Compression............................96 6.2.3.3 Shear Strength Properties under Plane Strain Conditions .............98 6.2.4 Geotextile Reinforcement Properties ...................................99 6.2.4.1 Unconfined Tensile Strength .........................................99 6.2.4.2 Unconfined Tensile Strength ........................................100 6.2.5 Centrifuge Test and Instrumentation ..................................102 6.3 FINITE ELEMENT MODEL ...................................................104 6.3.1 Initial Settings .....................................................104 6.3.1.1 Mesh Configurations ................................................104 6.3.1.2 Boundary Conditions ................................................105 6.3.2 Material Constitutive Model ..........................................106 6.3.2.1 Backfill and Foundation soils ......................................106 6.3.2.2 Reinforcement ......................................................111 6.3.2.3 Soil and Reinforcement Interaction .................................114 6.3.3 Finite Element Result ................................................117 6.3.3.1 Failure G-Level ....................................................117 6.3.3.2 Deformation Pattern ................................................118 6.3.3.3 Location of Failure Surface ........................................119 6.3.3.4 Reinforcement Tensile Load .........................................120 6.4 REINFORCEMENT LOAD .....................................................121 6.4.1 Centrifuge Scaling Laws ..............................................122 6.4.2 Calculation Procedure.................................................124 6.4.2.1 Failure Wedge Method ...............................................124 6.4.2.2 Leschinsky and Boedeker (1989) .....................................125 6.4.2.3 Limit Equilibrium Method ...........................................126 6.4.3 COMPARISON OF REINFORCEMENT LOAD .....................................128 CHAPTER 7: DISCUSSION OF THE DISCREPANCY ...................................134 7.1 OVERVIEW................................................................134 7.2 APPARENT COHESION ......................................................134 7.3 ftx or fps .............................................................135 7.4 UNCERTAINTY OF FIELD MEASUREMENT........................................137 7.5 DILATANCY ANGLE (y) ....................................................138 7.6 VIOLATED OF SHEAR STRENGTH THEORY ......................................140 CHAPTER 8: CONCLUSIONS .....................................................142 8.1 OVERVIEW................................................................142 8.2 COMPARISON OF CURRENT DESIGN METHOD ....................................143 8.3 SUGGESTION FOR ENGINEERING APPLICATIONS ................................144 8.4 FUTURE RESEARCH ........................................................145

Allen, T.M., Bathurst, Richard J., Holtz, Robert D., Walters, D., Lee, Wei F., (2004), “A NewWorking Stress Method for Prediction of Reinforcement Loads in Geosynthetic Walls”, Canadian Geotechnical Journal, v 40, n 5, p976-994
Arriaga, F., (2003), ”Response of Geosynthetic-Reinforced Structures under Working Stressand Failure Conditions” PhD Dissertation, Department of Civil Engineering, The University of Colorado, Boulder.
Bathurst, Richard J., Miyata, Y., Nernheim, A., Allen, T.M., (2008“Refinement of KStiffness Method for Geosythetic-Reinforced Soil Walls”, Geosynthetic
International, 15, no 4
Bathurst, Richard J., Vlachopoulos, Nicholas., Walters, Dave L., Burgess, Peter G., Allen, T.M., (2006), “The Influence of Facing Stiffness on the Performance of Two Geosynthetic Reinforced Soil Retaining Walls”, Canadian Geotechnical Journal, v 43,1225-1237.
Bathurst, Richard J., Vlachopoulos, Nicholas., Walters, Dave L., Burgess, Peter G., Allen,T.M., (2006), “ Full Scale Testing of Geosynthetic Reinforced Walls”, Proceedings of Geodenver 2006, August, Denver, Colorado.
Budhu, Muni., (2011), “ Soil Mechanics and Foundations 3rd edition”, John Wiley & Sons Inc,USA.
Elias, V., Christopher, B.R., and Berg, R,R., (2001), “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines” Report No.FHWA-NHI-00-043, National Highway Institute, Federal Highway Administration,Washington, D.C, March
Hatami, K and Bathurst, Richard J., (2005), “ Development and Verification of a Numerical Model for the Analysis of Geosynthetic-Reinforced Soil Segmental Walls under Working Stress Conditions”, Canadian Geotech Journal, v67, n 4, p 471-478
Huang, B.; Bathurst, Richard J.; Hatami, K., (2009), ”Numerical Study of Reinforced Soil Segmental Walls Using Three Different Constitutive Soil Models”, Journal of Geotechnical and Geoenviromental Engineering, ASCE, p1486-1498
Karpurapu, R., Bathurst, Richard J., (1995), “Behavior of Geosynthetic Reinforced Soil Retaining Walls Using Finite Element Method”, Computers and Geotechnics, 17, p279-299
Leschinsky, D and Boedeker, R. H., (1989), ”Geosynthetic Reinforced Soil Structures”, Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 10, pp. 1459-1478
Leschinsky, D., (2009), “ On Global Equlibrium in Design of Geosynthetic Reinforced Walls”, Journal of Geotechnical and Geoenviromental Engineering, ASCE, March,p 309-315
Leschinsky, D., (2010), “Geosynthetic Reinforced Walls and Steep Slopes: Is it Magic?”,Geosynthetic Magazine, Vol 28, No. 3, June-July, p17-24
Murthy, V.N.S., (2002), “Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering”, Marcel Dekker Inc, New York.
Palmeira, Ennio. M., Tatsuoka, Fumio., Bathurst, Richard.J., Stevenson, Peter.E., Zornberg,J.G., (2008), “ Advances in Geosynthetic Materials and Applications for SoilReinforcement and Environmental Protection Works”, EJGE, p1-38
Yang, KH., (2009), “Stress Distribution within Geosynthetic-Reinforced Soil Structures”PhD Dissertation, Department of Civil Engineering, The University of Texas at Austin.
Zornberg, J. G and Arriaga, F., (2003), “Strain Distribution within Geosynthetic-Reinforced Slopes”, Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol.131. No 2, FEB., PP141-150

QR CODE