簡易檢索 / 詳目顯示

研究生: 趙子維
Tzu–wei - Chao
論文名稱: 以化學氣相沉積法合成氧化銥/氧化釕奈米桿薄膜之氣體感測特性之研究
Studies on Chemical Vapor Deposition of Ruthenium Dioxide and Iridium Dioxide Nanorods and Their Gas Sensing Characteristics
指導教授: 劉進興
Chin-Hsin Liu
口試委員: 蔡大翔
Dah-Shyang ,Tsa,
黃鶯聲
Ying-Sheng,Huang
何國川
Kuo-chuan,Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 氣體感測器壓電石英晶體微天平法氧化銥氧化釕有機金屬化學氣相沉積法
外文關鍵詞: gas sensor, QCM, IrO2, RuO2, MOCVD
相關次數: 點閱:556下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要利用化學氣相沉積方式合成氧化銥/氧化釕奈米桿為感測材料在石英感測晶片上的金電極進行沉積,用XRD與FESEM分析氧化銥/氧化釕的薄膜表面結構。其次以QCM 質量式感測器針對有機揮發化合物(VOC)氣體進行感測,且深入探討薄膜型態對氣體感測的影響。

合成氧化銥/氧化釕方面,主要探討基板溫度、沉積時間對薄膜型態的影響,結果顯示基板溫度為薄膜型態形成的關鍵,氧化銥在350~400oC下形成葉片狀奈米桿薄膜,450oC 下形成葉片狀+螺旋狀薄膜型態,至高溫500oC型態轉變為四方形柱狀奈米桿。合成氧化釕奈米桿薄膜方面,無法在金上形成奈米桿,以薄膜型態結構為主。

在QCM感測方面,RuO2活性強,對氣體吸附不可逆,感測價值低。而在IrO2奈米桿薄膜對烷類、醇類、芳香族類、酸類、胺類的氣體感測中,以對胺類和酸類的靈敏度最高,我們發現:
(1) IrO2奈米桿對酸類有較佳的感測特性,為可逆性吸附,t80快,吸附訊號也大。以IrO2感測1000ppm 丙酸為例, t80為194秒, △f= 170Hz。
(2) IrO2奈米桿沉積時間越長,膜越厚,感測靈敏度增加。以基板溫度350oC而言,在不同沉積時間20min、30min、40min、50min、60min下,沉積60min的薄膜吸附訊號較20-40min的訊號大四倍。
(3) IrO2奈米桿可偵測至1ppm以下的丙酸濃度,隨濃度提高(1~1000ppm),感測靈敏度增加,濃度曲線隨基板溫度、沉積時間增加而升高。
(4)基板溫度的提高,薄膜型態改變,以350oC下沉積的葉片狀型態薄膜感測靈敏度薄膜最佳。


In this thesis we investigated the metal organic chemical vapor deposition (MOCVD) deposition of ruthenium oxide and iridium oxide onto the gold electrode on the piezoelectric quartz crystal for gas sensor applications. The surface structure and morphology of RuO2 and IrO2 layers were studied with X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM), and the gas sensing of volatile organic compond (VOC) were carried out with the quartz crystal microbalance (QCM) technique.

For the deposition, the effects of substrate temperature and the deposition time on the oxides structure were investigated. We found that IrO2 exhibit wedge-shape nanorods with the substrate temperature in the 350-400 oC range, some of the wedges enfold into a spiral square tube at the substrate temperature of 450oC, and the square obelisk nanorods are observed at 500 oC. However, within the same temperature range, RuO2 were found only in the form of continuous film, with no nanorods.

For QCM gas sensing, we found that RuO2 interacts with most VOC irreversibly, has less values as a gas sensor. IrO2, however, shows reversible behavior in the adsorption of aromatics and acids. The sensing of organic acids is of high sensitivity and fast response. For example, in sensing of 1000ppm propionic acid vapor, the IrO2 sensor shows a frequency shift of 170Hz, and t80 of 194 seconds. A good response signal can be detected with 1ppm propionic acid vapor; the detection limit is in the ppb range.

The sensitivity goes up with the amount of IrO2 deposited. With the deposition time of 60 minutes, the QCM signal is four-fold larger than that of 20-40 minutes deposition. The sensitivity is also found to be the largest for the wedge-shape IrO2 deposited at 350 oC.

中文摘要……………I 英文摘要……………..III 誌謝……………..VI 目錄……………..V 圖目錄……………..XIII 表目錄……………..XIV 第一章緒論1 1.1 奈米科技的簡介1 1.2 感測器之原理與簡介2 1.3 研究動機6 第二章文獻回顧7 2.1 RuO2與IrO2晶體結構7 2.2 RuO2與IrO2晶體導電性9 2.3 RuO2與IrO2晶體成長10 2.4 RuO2與IrO2之場發射(Field Emission)特性15 2.5 RuO2與IrO2對氣體感測之應用17 2.5.1 IrO2的氣體感測應用17 2.5.2 RuO2的氣體感測應用17 2.5.2.1氧氣在RuO2的化學吸附19 2.6 石英晶體微量天平21 2.6.1 石英震盪器之壓電性(Piezoelectricity)21 2.6.2 QCM偵測之理論模式建立22 第三章實驗方法與步驟24 3.1 實驗藥品24 3.1.1 前驅物25 3.2 儀器設備26 3.2.1 化學氣相沉積設備27 3.3 實驗流程29 3.4石英震盪晶體處理30 3.5以MOCVD法製備RuO2與IrO2薄膜步驟31 3.6結構分析與性質量測儀器33 3.7 QCM(Quartz Crystal Membrane)裝置35 第四章結果與討論37 4.1氧化銥奈米桿實驗結果與討論37 4.1.1基板溫度之影響38 4.1.2沉積時間之影響43 4.2氧化釕奈米桿實驗結果與討論46 4.2.1基板溫度之影響47 4.3氧化銥/氧化釕結構分析總結50 4.4氧化銥與氧化釕奈米桿的氣體感測55 4.4.1氧化銥奈米桿薄膜的氣體感測55 4.4.1.1氧化銥感測器的吸附應答時間60 4.4.1.2氧化銥奈米桿薄膜對酸類之感測61 4.4.1.3氧化銥奈米感測薄膜對丙酸之重現性65 4.4.1.4氧化銥奈米桿薄膜對胺類之感測66 4.4.1.5濃度效應69 4.4.1.6膜厚效應71 4.4.1.7薄膜型態對氣體感測之影響74 4.4.2氧化釕奈米桿薄膜的氣體感測78 4.4.2.1氧化釕薄膜的可逆性82 4.4.2.2氧化釕薄膜感測器的吸附應答時間85 4.4.2.3氧化釕薄膜對酸類之感測86 4.4.2.4氧化釕薄膜對胺類之感測87 4.4.2.5濃度效應88 4.4.2.6薄膜型態對氣體感測之影響89 第五章結論92 參考文獻95

1.T.W.Ebbesen, “Wetting, filling and decorating carbon nanotube”, J.phys.Chem. Solid, 57, 951(1996)

2.J. Sloan, J, Cook, J,R. Heesom, M. L. H. Green, J.L. Hutchison, “The encapsulation and in situ rearrangement of polycrystalline SnO inside xarbon nanotube”, J. Cryst. Growth, 173, 81(1997)

3.J. J. Wu and S.C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, submit to J. Phys. Chem. B,106,9546(2002)
4.J. J. Wu, S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”,Adv.Master., 14, 215(2002)

5.P. Yang,C. M. Lieber, “Nanorod-superconductor composites:A pathyway to materials with high cirtical current densities”, Science ,273,1836(1996)
6.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones,N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., 9, 3173(1999)

7.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., 303, 311(1999)

8.Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee,D.J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J.M. Kim, “Catalytic growth of β-Ga2O3 nanowires by Arc discharge”, Adv. Mater., 12, 746(2000)

9.M. Blouin and D. Guay, “Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1-x Oxide Electrodes During Cathodic Polarization and Hydrogen Evolution”, J. Electrochem. Soc., 44, 573(1997)

10.A. Cornell, and D. Simonsson, “Ruthenium Dioxide as Cathode Material for Hydrogen Evolution in Hydroxide and Chlorate Solutions”,J. Electrochem. Soc., 140, 3123(1993)

11.K. Kalyanasundaram, E. Borgarello and M. Gratzel, “Visible Light Induced Water Cleavage in CdS Dispersions Loaded with Pt and RuO2 Hole Scavenging by RuO2 “,Helvetica Chimica Acta, 64, 362(1981)

12.P. K. Khanna, S. K. Bhatnagar, and M. L. Sisodia, “Inter-diffusion Phenomena and Electrical Conduction in Thick-film Segmented –resistor Structure”, J. Phys. D: Appl. Phys., 21, 1796(1998)

13.M. Prudenziati, B. Morten, F. Cilion, Fcilloni and G.ruffi, “Very High Strain Sensitivity in Thick-film Resistor: Real and False Super Gauge Factor”, Sensors and Actuators, 19, 401(1989)

14.S. Ferro and A. de Battisti, “Electrochemistry of the apueous europium(III)/europium(II) redox couple at conductive diamound electrodes”J. Electroanalytical Chemistry, 533,177(2002)

15.A. T. Kuhn,C.J. Mortimer, “Kinetic of Chlorine Evolution and Reduction on Titanium-Supported Metal Oxides Especially RuO2 and IrO2”,J. Electrochem. Soc., 120,231(1973)

16.S. L. Kuo and N. L. Wu, “Composite Supercapacitor Contaning Tin Oxide and Electroplated Ruthenium Oxide”, Electrochemical and Solid-state Lett., 6, A85(2003)

17.S. Y.Mar,J. S. Liang, C.Y. Sun, Y. S. Huang, “Grain boundary Scattering in Rutheniun dioxide thin film.”, Thin Solid Film, 238, 158(1994)

18.S. Trasatti and W. E. O’Grady, “Properties and Application of RuO2-based electrodes”,Adv. Electrochem. Eng., 12,177(1981)

19.D.Galizzioli, F. Tandardini and S. Trasatti, “Ruthenium Dioxide:A New Electrode Material. II. Non-stoichiometry and Enegtics off Electrode Reactions in Acid Solutions”, J. Appl. Electrochem., 5, 203(1975)
20.陶德和,科儀新知,第十五卷,第二期,1993

21.Nateale, C. D., A. Macagnano, G.Repole, G.Saggio, A.D.Amico, R. Paolesse and T. Boschi, Materials Science and Engineering, C5,
209-215(1998)

22.施正雄, 科學發展月刊, 27, 1184-1197(1999)

23.Ju, Y. H.; C. J. Liu and J. C. Hsieh, J. Chin. Inst. Chem. Engrs., 29, 6, 415 (1998)

24.Liu, C. J., S.Y. Wang, J. C. Hsieh and Y. H. Ju, Sensors and Actuators, B65, 371 (2000)

25.Liu, C. J., C.H. Peng, Y. H. Ju and J.C. Hsieh, Sensors & Actuators, B52, 3, 264 (1998)

26.Liu, C. J., W. C. Hou and Y. H. Ju, J. Chin. Inst. Chem. Engrs., 31, 237 (2000)

27.Liu, C. J., J. C. Hsieh and Y. H. Ju, J. Vac. Sci. Technol. A14, 753 (1996)

28.Ju, Y. H., J. C. Hsieh and C. J. Liu, Thin Solid Films, 342, 238 (1999)

29.Hsieh, J. C., C. J. Liu and Y. H. Ju, Thin Solid Films, 322, 98 (1997)

30.Guilbault, G. G. and J. M. Jordan, “Analytical uses of piezoelectric crystals︰A review”. CRC Critical Review in Analytical Chemistry, 19, 1-28 (1988)

31.Grate, J. W., S. J. Martin and R. M. White, Anal. Chem.,65, 940A-948A, (1993)

32.Natale, C. D., D. Salimbeni, R. Paolesse, A. Macagnano and A. D,Amico, Sensors and Actuators, B65, 220-226 (2000)

33.Sauerbrey, G., Z. Phys., 155, (1959), 206

34.謝志松, “氧化釕化學氣相沉積及場發射性質”,國立台灣科技大學化學工程系碩士論文(2004)

35.梁雅閔, “化學氣相沉積氧化銥奈米桿氧化銥薄膜之製備與結構分析”國立台灣科技大學化學工程系碩士論文(2003)

36.A. Bolzan, C. Fong, B. J.Kennedy, C. J. Howard, “Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B53, 373(1997)

37.L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B13, 2433(1976)

38.W. D. Ryden and A. W. Lawson, “electronic transport properties of IrO2 and RuO2” , Phys. Rev. B1, 1813(1984)

39.Mattheiss, L. F., “Electronic Structure of RuO2 , OsO2, and IrO2,” Phys. Rev. B, Vol. 13, No. 6, 2433-2450(1976)

40.Hackwood, S., L. M. Schiavone, W. C. Dautremont-Smith and G. Beui, “Anodic Evolution of Oxygen on Sputtered Iridium Oxide Films, ”J. Electrochem, Soc.,128, No. 12, 2569-2573(1981)

41.Weudt, M., and H. M. Kuhne, “Sputtering of Iridium Oxide Films as Protective Layer for Oxygen Evolving Photoamodes,” Conference Record of Twentieth IEEE photovoltaic Specialists, 2, 1656-1661(1988)

42.Swette, I., N. Kackley and S. A. McCatty, “Oxygen electrodes for Rechargeable Alkline Fuel Cell,” J. of Power Source, 36, 323-329(1991)

43.Hamnett, A., P. S. Newcastle and R. D. Wingate, “Nafion-bonded Porous Titanium Oxide Electrodes for Oxygen Evolution towards a Regeneatrive Fuel Cell,” J. of Appl. Electrochemistry, 24, 982-985(1991)

44.Oxley, J. E., “High-rate Solid-state Electrochemical Capacitor,” Proceedings of the 34th Internationol Power Sources Symposium,. 346-350(1990)

45.M. Lambrechts and W. Sansen, “Thick-film Voltammetric Sensors Based On Ruthenium Dioxide,” Sensors and Actuators, 13, 287-292(1988)

46.W. OlThuis, J. C. Van KerKhof and P. Bergveld, “Preparation of Iridium Oxide and its Application in Sensor-Actuator Systems,” Sensors and Actuators, B4, 151-156(1991)
47.J. A. Mihell, J. K. Atkinson, “Planar Thick-film pH Electrodes based on Ruthenium Dioxide Hydrate,” Sensors and Actuators, B48, 505-511(1998)

48.Robert M. Ianniello and Alex Ander M. Yacynych, “Urea Sensor Based On Iridium Dioxide Electrodes With Immobilized Urease,” Analytical Chimica Acta. ,146, 249-253(1983)

49.Matthew F. Smiechowski, Vadim F. Lvovich, “Iridium Oxide Sensors for Acidity and Basicity Detection in Industrial Lubricants,” Sensors and Actuators, B96, 261-267(2003)

50.Dario Narducci, Alberto Ornaghi and Claudio M. Mari, “CO Determination in Air by YSZ-based Sensors,” Sensors and Actuators B, 18-19, 566-568(1994)

51.A.Karthigeyan, R. P. Gupta, K. Scharnagl, “A Room Temperature HSGFET Ammonia Sensor Based on Iridium Oxide Thin Film,” Sensors and Actuators, B85, 145-153(2002)

52.Toro Ishiji, David W. Chipman, Taro Takahashi , Katuso Takahashi, Katsuo Takahashi, “Amperometric Sensor for Monitoring of Dissolved Carbon Dioxide In Seawater,” Sensors and Actuators, B76, 265-269(2001)

53.Anette Salomonsson, Somenath Roy, Christian Aulin, “Nanoparticles for Long-term Stable, More Selective MISiCFET Gas Sensors,” Sensors and Actuators, B107, 831-838(2005)

54.Reui-San Chen, Ying-Sheng Huang, Ya-Min Liang, Dah-Shyang Tsai, Yun Chi and Ji-Jung Kai, “Growth Control and Characterization of Vertically Aligned IrO2 Nanorods,” Journal of Materials chemistry, 13, 2525-2529(2003)

55.Reui-San Chen,Ying-Sheng Huang, Dah-Shyang Tsai, Surajit Chattopadhyay, Chien-Ting Wu, Zon-Huang Lan and Kuei-Hsien Chen, “Growth of Well Aligned IrO2 Nanotubes on LiTaO3(012) Substrate”, Chem. Mater. 2004, 16, 2457-2462(2004)

56.Ruei-San Chen and Ying-Sheng Huang, Ya-Min Liang, Chim-Sung Hsieh and Dah-Shyang Tsai, Kwong-Kau Tiong, “Field Emission From Vertically Aligned Conductive IrO2 Nanorods,” Applied Physics Letters, 84, 1552-1554(2004)

57.J.T. Sommerfeld and G. Parravano, “Oxygen Chemisorption on Ruthenium Dioxide”, J.Chem. Phy., 102-115(1964)

58.Peter Deman , Jan Suls, Willy Sansen, “Continuous differential monitoring of the spent dialysate glucose level: clinical evaluation.”, Sensors and Actuators, B44, 304-308(1997)

59.Curie, P., J. Curie, C. R. Acad. Sci., 91, 294(1880)

60.Ward, M. D., D. A. Buttry, Science, 249, 1000(1990)

61.趙雲秋, 國立台灣師範大學化學系, 碩士論文, (1995)

62.Lu, C., A. W. Czanderna, Applications of Piezoelectric Quartz Crystal
Microbalances, Elsevier Science, New York, (1984)

QR CODE