簡易檢索 / 詳目顯示

研究生: 陳星宇
Sing-Yu Chen
論文名稱: 利用量子井混合技術整合分佈反饋式雷射與電致吸收調變器於單石基板之研究與製作
Design and Fabrication of Distributed-Feedback Laser and Electro-Absorption Modulator by Quantum-Well Intermixing Technique
指導教授: 李三良
San-Liang Lee
口試委員: 劉政光
Cheng-Kuang Liu
邱逸仁
Yi-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 電致吸收調變器電吸收調變器雷射
外文關鍵詞: Electro-absorption Modulator(EAM), Electroabsorption Modulated Laser (EML)
相關次數: 點閱:250下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用量子井混合技術結合雷射與電致吸收調變器,使其能運用在高速傳輸系統為本論文主要的研究方向。主動層材料選用為磷砷化銦鎵(InGaAsP)為主的量子井結構,經過摻植輔助內部擴散來改變量子井主動層的能隙,並分析在不同條件下,對內部擴散的影響。
在原理部份,模擬內部擴散後主動層能帶變化,觀察圓弧形量子井的波函數偏移趨勢,並且針對主動層材料進行特性模擬,最佳化量子井厚度。
在實驗方面,分別在700℃及750℃熱退火後,進行光激發螢光量測。由實驗結果得知,峰值波長偏移量最多可達80 nm左右之藍位移。歸納出最佳條件後,實際運用在電致吸收調變器雷射上,將雷射與調變器積體化,利用量子井混合技術產生65nm藍位移,並獲得初步實驗結果。


We integrate DFB laser and electroabsorption modulator by using the quantum well intermixing(QWI) technique for application in high speed transmission system. The active region is InGaAsP based quantum well structure. We utilize the impurity-induced inter-diffusion technique to change the bandgap of the active region and analyze the diffusion effect for different annealing conditions.

We simulated the change of bandgap in the active region after appling the QWI technique. We observe the trend of wave-function change in the parabolic well. The active region material characteristics are analyzed to optimize the quantum well width.

We measure the photoluminescent spectrum after the annealing at 700℃and 750℃, respectively. The shift of peak wavelength up to 80 nm is observed. After this investigation, we choose 65 nm of blue shift from the QWI to realize the electron-absorption modulated laser. The fabrication procedures and preliminary experimental results are demonstrated.

摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VII 第一章 簡介 1 1-1 前言 1 1-2電致吸收調變雷射簡介 3 1-3雷射-外部光調變器積體化整合製作方式 5 1-4 量子井混合效應技術 7 1-5研究動機 8 1-6論文架構 9 第二章 基本原理 10 2-1電致吸收效應 10 2-2 Franz-Keldysh效應 11 2-3 量子侷限史塔克效應 (Quantum-Confined Stark Effect) 13 2-4 DFB雷射原理簡介 16 2-5 應力型量子井能隙計算 17 2-6 在均勻電場下量子井系統波函數解析解 21 2.6.1 原理簡介 21 2.6.2 結果討論 23 第三章 結構設計與模擬 26 3-1前言 26 3-1-1雷射與調變器整合架構圖 26 3-2 DFB元件雷射特性模擬 28 3-3 半導體載子內部擴散效應分析與模擬 33 3-3-1 主動層載子內部擴散效應模型 33 3-4 量子井混合效應對波函數的影響 37 3-4-1 量子井能階與波函數計算方法 37 3-4-2 內部擴散效應對量子井侷限的影響 39 3-4-3 量子井寬度的選擇 41 第四章 元件製程與結果 42 4-1光罩設計與製程步驟 42 4-2 量子井混合調變器製程 43 4-3 擴散製程條件測試 45 4-3-1低劑量條件測試 46 4-3-2 製程條件討論 48 4-4製程結果討論 49 4-5 元件量測與討論 55 4-5-1 量測平台與雙邊耦合 55 4-5-2基本元件特性量測結果 57 第五章 結論 62 5-1 成果與討論 62 5-2 未來與研究方向 64 附錄 65 參考文獻 69

[1]D. Derickson, Fiber Optic Test and Measurement, Prentice-Hall, pp. 1-51 (1998)
[2]T. Ido, H. Sano, S. Tanaka, and H. Inoue, “Frequency-Domain Measurement of Carrier Escape Times in MQW Electroabsorption Optical Modulators,” IEEE Photon. Technol. Lett., vol. 7, pp. 1421-1423, Dec. 1995.
[3]H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, and H. Yasaka, “Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module with Low Driving Voltage,” IEEE J. Sel. Topics Quantum Electron., vol. 13, pp. 1129-1134, Sep./Oct. 2007.
[4]H. Wang, H. Zhu, and Y. Cheng, “An Improved Selective Area Growth Method in Fabrication of Electroabsorption Modulated Laser,” in Tech. Dig. Opt. Fiber Commun. Conf. (OFC),Asia Oct. 2007, pp. 490-492.
[5]L. Hou, H. Zhu, and Q. Kan, “A 1.55-μm Ridge DFB Laser and Electroabsorption Modulator Integrated with Buried-Ridge-Stripe Dual-Waveguide Spot-Size Converter Output,” IEEE Photon. Technol. Lett., vol. 18, pp. 235-237, Jan. 2006.
[6]K. Sato, I. Kotaka, K. Wakiata, Y. Kondo,and M. Yamamoto, “Strained-InGaAsP MQW Electroabsorption Modulator Integated DFB Laser,” Electron. Lett., vol. 129, pp. 1087-1089, Jun. 1993
[7]A. Ramdane, P. Krauz, E. V. K. Rao, A. Hamoudi, A. Ougazzaden, D. Robein, A. Gloukhian, and M. Carre, “Monolithic Integration of InGaAsP-InP Strained-Layer Distributed Feedback Laser and External Modulator by Selective Quantum- Well Interdiffusion,” IEEE Photon. Technol. Lett., vol. 7, pp. 1016-1018, Sep. 1995.
[8]C. S. Wang, Y. C. Chang, U. Krishnamachari, J. W. Raring, and L. A. Coldren, “Short-Cavity 980 nm DBR Lasers With Quantum Well Intermixed Integrated High-Speed EA Modulators,” IEEE J. Sel. Topics Quantum Electron., vol. 13,pp. 129-130, Oct. 2007.
[9]G. L. Li, “Optical Intensity Modulators for Digital and Analog Applictions,” J. Lightw. Technol, vol. 21, pp. 2204-2206, Sep. 2003.
[10]J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers,” IEEE J. Quantum Electron., vol. 35, pp. 771-782, May 1999.
[11]T. Ikeda, and H. Ishikawa, “Analysis of the Attenuation Ratio of MQW Optical Intensity Modualtor for 1.55 μm Wavelength Taking Account of Electron Wave Function Leakage,” IEEE J. Quantum Electron., vol. 32, pp. 284-292, Feb. 1996.
[12]S. Zhang, “Traveling-wave Electroabsorption Modulators,” University of California, Santa Barbara, CA, Ph.D. Dissertation, 1999.
[13]潘彥廷, “Design of Quantum Well Intermixing Technology for Fabricating Semiconductor Lasers,” 碩士論文, 國立台灣科技大學, 2003.
[14]S. L. Chuang , Physics of Optoelectronic Devices, John Wiley & Sons, New York, pp. 538-530 (1995).
[15]李政鍵, “Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on The InAlAs/InGaAlAs Material System,” 碩士論文, 國立中山大學, 2004.
[16]H. Takeuchi, and K. Tsuzuki, “Very High-Speed Light-Source Module up to 40 Gb/s Containing an MQW Electroabsorption Modulator Integrated with A DFB Laser,” IEEE J. Sel. Topics Quantum Electron., vol. 3, pp 336-343, Apr. 1997.

無法下載圖示 全文公開日期 2013/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE