簡易檢索 / 詳目顯示

研究生: 洪宇辰
Yu-Chen Hung
論文名稱: VLS機制成長硒化鋅奈米線暨微結構與元件特性分析
Vapor-Liquid-Solid (VLS) Growth, Microstructure Analysis and Device Characterization of Zinc Selenide Nanowires
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 葉炳宏
none
陳士勛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 硒化鋅奈米線VLS
外文關鍵詞: ZnSe, zinc selenide, Vapor-Liquid-Solid
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用熱蒸鍍法經由VLS成長機制在爐管內成長硒化鋅奈米線,以硒化鋅粉末作為前驅物置於管內,2、5及10奈米金薄膜的(100)矽基板做為成長基板,利用金顆粒作為成核催化點,使奈米線經由VLS成長機制生長,由此機制生成的奈米線能有良好的結晶性及準直性。透過控制不同的實驗參數觀察奈米線的生長變化,其中的變因包含:前驅物的溫度、成長溫度、成長壓力、載流氣體、金膜厚度、成長位置以及成長時間。比較完其變因對奈米線造成的的影響,選出最佳的成長條件下生成的奈米線,對其做一系列的分析及探討,其中最佳生長條件下生成的奈米線,線長大約20至50微米,直徑大概60奈米,且都有良好的均勻度及準直性。分析的部分,分成材料性質分析及光電分析。透過場發射掃描式電子顯微鏡觀察硒化鋅奈米線的表面構型及一些基本性質;X光繞射儀及穿透式電子顯微鏡了解硒化鋅奈米線的晶體結構,得知硒化鋅奈米線的結構是纖鋅礦結構,利用EDS知道奈米線的成分比例,進而證明此成長機制是透過VLS機制生成;使用陰極發光光譜儀及紫外-可見光反射式光譜儀分析硒化鋅奈米線的光學性質,包括能隙及內部發光效應;拉曼分析則是了解硒化鋅奈米線的震動特性,進而得知此材料的性質。最後,把硒化鋅奈米線均勻地灑在鍍有第一層電極圖案的基板上,再經由FIB製作成場效電晶體裝置,利用四點探針量測的方法測量其電流-電壓特性曲線,分析其電阻率等特性,由於使用FIB製作電極,會使奈米線受到鎵離子的轟擊,造成鎵離子參雜的情形發生,進而改變奈米線的性質,使其電阻下降及形狀的改變。透過了解這些基本特性,對硒化鋅奈米線有更進一步的認識,對之後不同元件製作及應用上好的基礎及正向的幫助。


    ZnSe nanowires (NWs) were synthesized by using a thermal evaporation method in a vacuum-sealed quartz tube inside a tube furnace. NWs were used ZnSe powder as a precursor to grow on silicon (100) substrates coated with different thickness 2, 5, and 10 nm Au catalysts film. The growth mechanism of NWs is vapor-liquid-solid (VLS) mechanism. It will help us to get the good crystallinity and less defect in the NWs. Moreover, we will observe the different condition of NWs by controlling the temperature of precursor, temperature of growth area, pressure, carrier gas, thickness of Au film, position of substrate and growth time of NWs. Combination of above conditions, the length of appropriate NWs we need is about 20-50 μm, and the dimeter is around 60 nm. Furthermore, the morphorlogy of NWs is uniform and straight. ZnSe NWs were characterized by field-emission scanning electron microscope (FE-SEM). X-ray diffractometer (XRD), and transmission electron microscope (TEM) use to observe the morphology and crystal structure of NWs. The structure of ZnSe NWs is zinc-blende structure. Also, EDS is used to prove the NWs is grown by VLS mechanism. Cathodoluminescence (CL) and ultraviolet–visible (UV-Vis) spectroscopy observe the optical property of NWs, and Raman spectroscopy also observes the characteristic of ZnSe NWs. After the characteristic analysis of ZnSe NWs, NWs were fabricated as single NW FET device by using focus ion beam (FIB). Use 4-point probe and 2-point probe measurements to measure I-V curve of ZnSe NW in order to study the electrical property of single NW. The conductivity is almost metallic conductor behavior. This result indicated that the ZnSe NWs were doped by Ga ion through FIB bombard, it caused the low resistivity of NW.

    摘要 I ABSTRACT II Acknowledgment III List of Abbreviations and Acronyms VIII List of Figures and Tables IX Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.2 Nanostructures 2 1.2.1 Zero-Dimensional Nanostructures 3 1.2.2 One-Dimensional Nanostructures 4 1.2.3 Two-Dimensional Nanostructures 5 1.2.4 Three-Dimensional Nanostructures 6 1.3 Growth Mechanism 6 1.3.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 7 1.3.2 Vapor-Solid (VS) Growth Mechanism 10 1.4 II-VI Group Semiconductor 10 1.4.1 Zinc Selenide 13 1.4.2 Structure of Zinc Selenide 13 1.4.3 Optical Property 16 1.4.4 Electrical Property 17 1.5 Growth of ZnSe Nanostructures 17 1.5.1 Chemical Vapor Deposition (CVD) 18 1.5.2 Molecular Beam Epitaxy ( MBE ) 19 1.5.3 Hydrothermal Method 20 1.5.4 VLS Mechanism in CVD Method 21 Chapter 2 Experimental Procedures 23 2.1 Vacuum Furnace Setup 23 2.2 The Fabrication of ZnSe Nanowires 24 2.3 The Fabrication of Single ZnSe Nanowire Field-Effect Transistor 26 2.4 X-Ray Diffractometry (XRD) 26 2.5 Scanning Electron Microscope (SEM) Observation 27 2.6 Energy Dispersive Spectrometer (EDS) Analysis 28 2.7 Transmission Electron Microscope (TEM) Observation 29 2.8 Raman Spectroscopy Observation 30 2.9 Cathodoluminescence (CL) Measurements 31 2.10 Ultraviolet–Visible Spectroscopy Observation 32 2.11 Electrical Measurements 33 Chapter 3 Result and Discussion 34 3.1 The Influence of Growth Environment 34 3.1.1 The Influence of Changing Temperature in Growth Area 34 3.1.2 The Influence of Changing Precursor Temperature 38 3.1.3 The Influence of Changing Pressure 41 3.1.4 The Influence of Changing Carrier Gas 44 3.1.5 The Influence of Different Thickness of Au Film 46 3.1.6 The influence of different position of substrate 48 3.1.7 The influence of different growth time 51 3.2 The Configuration and Component of ZnSe NWs 54 3.2.1 SEM analysis of ZnSe NWs 55 3.2.2 EDS analysis of ZnSe NWs 58 3.3 Structure and Characteristic of ZnSe NWs 60 3.3.1 XRD Analysis 61 3.3.2 TEM Analysis 63 3.4 Optical Analysis of ZnSe NWs 67 3.4.1 Cathodoluminescence Analysis 67 3.4.2 Ultraviolet–Visible Spectroscopy Observation 70 3.5 Raman Scattering Spectroscopy Analysis 71 3.6 Electrical Property Measurement 73 Chapter 4 Summary and Conclusions 79 Chapter 5 Future Works 83 References 84

    References
    [1] R. P. Feynman, “There’s Plenty of Room at the Bottom,” Eng. Sci., 1960, 23, 22-36.
    [2] K. E. Drexler, “Engines of Creation: The Coming Era of Nanotechnology,” Doubleday, 1986.
    [3] H. Zhao, M. Chaker, N. Wu and D. Ma, “Towards Controlled Synthesis and Better Understanding of Highly Luminescent PbS/CdS Core/Shell Quantum Dots,” J. Mater. Chem., 2011, 21, 8898-8904.
    [4] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, “Nucleation and Growth of Surfactant-Passivated CdS and HgS Nanoparticles: Time-Dependent Absorption and Luminescence Profiles,” Nanoscale, 2010, 2, 145-152.
    [5] H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang and L. Y. Chen, “Adsorption and Binding of Capping Molecules for Highly Luminescent CdSe Nanocrystals – DFT Simulation Studies,” Nanoscale, 2010, 2, 2679-2684.
    [6] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 1991, 354, 56-58.
    [7] Gudiksen, M. S., Lauhon, L. J., Wang, J., Smithn, D. C., Lieber, C. M., “Growth of Nanowires Superlattice Structures for Nanoscale and Electronics,” Nature, 2002, 415, 617-620.
    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 2005, 438, 197-200
    [9] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Colemanand and M. S. Strano, “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides, ” Nature Nanotechnology, 2012, 7, 699.
    [10] A. K. Geim and I. V. Grigorieva, “Van der Waals Heterostructures,” Nature, 2013, 499, 419.
    [11] H. Kim, H. Jeong, T. K. An, C. E. Park, and K. Yong, “Hybrid-Type Quantum-Dot Cosensitized ZnO Nanowire Solar Cell with Enhanced Visible-Light Harvesting,” ACS Appl. Mater. Interfaces, 2013, 5, 268−275
    [12] S. Park, S. An, H. Ko, C. Jin, and C. Lee, “Synthesis of Nanograined ZnO Nanowires and Their Enhanced Gas Sensing Properties,” ACS Appl. Mater. Interfaces, 2012, 4, 3650-3656
    [13] R. S. Wagner, W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 1964, 4, 89-90.
    [14] M. Grundman, The Physics of Semiconductors 2nd edition, 2010.
    [15] Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. T. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang and Y. F. Chen, “Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes,” Nano Lett., 2009, 9, 1839-1843.
    [16] M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang and L. J. Chen, “Highly Sensitive Metal–Insulator–Semiconductor UV Photodetectors Based on ZnO/SiO2 Core–Shell Nanowires,” J. Mater. Chem., 2012, 22, 8420-8425.
    [17] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, “Nucleation and Growth of Surfactant-Passivated CdS and HgS Nanoparticles: Time-Dependent Absorption and Luminescence Profiles,” Nanoscale, 2010, 2, 145-152.
    [18] H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang and L. Y. Chen, “Adsorption and Binding of Capping Molecules for Highly Luminescent CdSe Nanocrystals – DFT Simulation Studies,” Nanoscale, 2010, 2, 2679-2684.
    [19] S. N. Sarangi, K. Goswami and S. N. Sahu, “Biomolecular Recognition in DNA Tagged CdSe Nanowires,” Biosens. Bioelectron., 2007, 22, 3086-3091.
    [20] J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, and C. L. Bai, “Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles,” Angew. Chem. Int. Ed., 2005, 44, 1269-1273.
    [21] J. Xu, A. Lu, C. Wang, R. Zou, X. Liu, X. Wu, Y. Wang, S. Li, L. Sun, X. Chen, H. Oh, H. Baek, G. C. Yi and J. Chu, “ZnSe-Based Longitudinal Twinning Nanowires,” Adv. Eng. Mater., 2014, 16, 459–465
    [22] C. Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, “Zinc-Blende —Wurtzite Polytypism in Semiconductors,” Phys. Rev. B, 1992, 46, 10086-10097
    [23] R. W. G. Wyckoff, “Crystal Structure 2nd ed.,” Interscience, 1963.
    [24] C. D. Lokhande, P. S. Patil, H. Tributsch and A. Ennaoui, “ZnSe Thin Films by Chemical Bath Deposition Method,” Solar Energy Materials & Solar Cells., 1998, 55, 379-393.
    [25] J. M. Doña and J. Herrero, “Chemical-Bath Deposition of ZnSe Thin Films,” J. Electrochem. Soc., 1995, 142, 764-770.
    [26] X. S. Fang, S. L. Xiong, T. Y. Zhai, Y. Bando, M. Y. Liao, U. K. Gautam, Y. Koide, X. G. Zhang, Y. T. Qian and D. Golberg, “High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors,” Adv. Mater., 2009, 21, 5016-5021.
    [27] M. A. Hasse, J. Qui, J. DePuydt and H. Cheng, “Blue-Green Laser Diodes,” Appl. Phys. Lett. 1991, 59, 1272-1274.
    [28] Kim J.R., Jones K.S., “Degradation of II-VI ZnSe-based Single Quantum Well Light-Emitting Devices,” Crit. Rev. Solid State, 1996, 21, 1-76.
    [29] Haase M.A., Qiu J., Depuydt J.M., Cheng H., “Blue-Green Laser-Diodes,” Appl. Phys. Lett., 1991, 59, (11), 1272-1274.
    [30] Xiang B., Zhang H.Z., Li, G. H. Li, F. H. Yang, and F. H. Su, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao, and D. P. Yu, “Green-Light-Emitting ZnSe Nanowires Fabricated via Vapor Phase Growth,” Appl. Phys. Lett., 2003, 82, 3330-3332.
    [31] G. Feng, C. Yang, and S. Zhou, “Nanocrystalline Cr2+-doped ZnSe Nanowires Laser,” Nano Lett., 2013, 13, 272-275.
    [32] S. Sarkar, S. Acharya, A. Chakraborty, and N. Pradhan, “Zinc Blende 0D Quantum Dots to Wurtzite 1D Quantum Wires: The Oriented Attachment and Phase Change in ZnSe Nanostructures,” J. Phys. Chem. Lett., 2013, 4, 3292–3297.
    [33] Q. Sun, Y. Zhang, S. Li, L. Du, H. Zhao, X. Liu, X. Li, “Synthesis of P-type Phosphorus Doped ZnSe Nanowires and their Applications in Nanodevices,” Materials Letters, 2015, 139, 487–490.
    [34] H. S. Song, W. J. Zhang, G. D. Yuan, Z. B. He, W. F. Zhang, Y. B. Tang, L. B. Luo, C. S. Lee, I. Bello, and S. T. Lee, “P-type Conduction in Arsenic-doped ZnSe Nanowires,” Appl. Phys. Lett., 2009, 95, 033117.
    [35] X. Zhang, J. Jie, Z. Wang, C. Wu, L. Wang, Q. Peng, Y. Yu, P. Jiang and C. Xie, “Surface Induced Negative Photoconductivity in P-type ZnSe : Bi Nanowires and their Nano-Optoelectronic Applications,” J. Mater. Chem., 2011, 21, 6736.
    [36] S. Li, Y. Jiang, B. Wang, D. Wu, J. Li, Y. Zhang, B. Yang, X. Ding, H. Zhou, H. Zhong, “Synthesis of P-type ZnSe Nanowires by Atmosphere Compensating Technique,” Micro & Nano Letters, 2011, 6, 459–46
    [37] K. Ohkawa, T. Mitsuyu, and O. Yamazaki, “Characteristics of Cl-doped ZnSe Layers Grown by Molecular-Beam Epitaxy,” J. Appl. Phys., 1987, 62, 3216
    [38] J.R. Arthur, “Molecular beam epitaxy,” Surface Science ,2002, 500, 189–217
    [39] J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi, and C. B. Carter, “Structure and Growth Mechanism of ZnSe Nanowires,” J. Appl. Phys., 2008, 104, 064-302
    [40] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew.Chem. Int. Ed., 2003, 42, 3031-3034.
    [41] G. H. Chen, S. J. Ho, and H. S. Chen, “Cubic Zincblende ZnSe Nanowires with an Entangling Structure Grown via Oriented Attachment and Their Application in Organic–Inorganic Heterojunction Light-Emitting Diodes,” J. Phys. Chem. C, 2014, 118, 25816-25822
    [42] K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, “Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles,” J. AM. CHEM. SOC., 2005, 127, 7140-7147
    [43] R. Kelsall, “Nanoscale Science and Technology,” John Wiley & Sons, Ltd., UK, 2005.
    [44] H.W. Zhu, P.G. Li, M. Lei, L.H. Li, S.L. Wang, W.H. Tang, “Sublimation Sandwich Route to Ultralong Zinc-Blende ZnSe Nanowires and the Cathodoluminescence Properties of Individual Nanowires”, Journal of Alloys and Compounds, 2011, 509, 3306-3309
    [45] D.B. Laks, C.G. Van de Walle, G.F. Neumark, P.E. Blochl, S.T. Pantelides, “Native Defects and Self-compensation in ZnSe,” Phys. Rev. B, 1992, 45, 10965–10978.
    [46] U. Philipose, T. Xu, P. Sun, H.E. Harry, Y.Q. Ruda, K.L. Wang, Kavanagh, “Enhancement of Band Edge Luminescence in ZnSe Nanowires,” J. Appl. Phys., 2006, 100, 084316.
    [47] K. Shahzad, J. Petruzzello, D. J. Olego, D. A. Cammack, and J. M. Gaines “Correlation between Radiative Transitions and Structural Defects in Zinc Selenide Epitaxial Layers,” Appl. Phys. Lett., 1990, 57 2452–2454.
    [48] B. Buda, C. Wang, W. Wrede, O. Leifeld, D. J. As, D. Schilora, and L. Lischka, “The Influence of the Early Stage of ZnSe Growth on GaAs (001) on the Defect-Related Luminescence,” Semicond. Sci. Technol., 1998, 13, 921–926.
    [49] Y. Jiang, X. M. Meng, W. C. Yiu, J. Liu, J. X. Ding, C. S. Lee, and S. T. Lee, “Zinc Selenide Nanoribbons and Nanowires,” J. Phys. Chem. B, 2004, 108, 2784-2787.
    [50] D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou, T. J. Mountziaris, “Characterization of Vapor-Phase-Grown ZnSe Nanoparticles,” Appl. Phys. Lett., 2002, 80, 4024.
    [51] D. Sarigiannis, J. D. Peck, T. J. Mountziaris,.; G. Kioseoglou, , A. Petrou, “Vapor Phase Synthesis of II-IV Semiconductor Nanoparticles in a Counterflow Jet Reactor,” MRS Proc., 2000, 616, 41.
    [52] B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel, G. Landwehr, “Resonance Raman Spectroscopy on Strain Relaxed CdZnSe/ZnSe Quantum Wires,” J. Raman Spectrosc. 2000, 31, 959.
    [53] G. Lermann, T. Bischof, A. Materny, W. Kiefer, T. Kummell, G. Bacher, A. Forchel, and G. Landwehr, “Resonant Micro-Raman Investigations of the ZnSe–LO Splitting in II–VI Semiconductor Quantum Wires,” J. Appl. Phys., 1997, 81, 1446.
    [54] T. J. Mountaiaris, J. D. Peck, S. Stoltz, W. Y. Yu, A. Petrou, P. G. Mattocks, “Metalorganic Vapor Phase Epitaxy and Characterization of Zn1−xFexSe films,” Appl. Phys. Lett., 1996, 68, 2270.
    [55] J. Salfi, U. Philipose, C. F. de Sousa, S. Aouba, and H. E. Ruda, “Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection,” Appl. Phys. Lett., 2006, 89, 261112

    無法下載圖示 全文公開日期 2021/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE