簡易檢索 / 詳目顯示

研究生: 李天鵬
Ting-Peng Lee
論文名稱: 市電與太陽能電池直流並聯供電系統
A DC Power System Fed by Utility and a Photovoltaic System Parallel-Connected at DC Side
指導教授: 羅有綱
Yu-Kang Lo
口試委員: 劉益華
Yi-Hua Liu
歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 最大功率追蹤增量電導法市電並聯
外文關鍵詞: MPPT, Incremental Conductance Method, Grid-Connected
相關次數: 點閱:238下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來因為能源的短缺與環保問題受到各國的重視,因此尋找新能源取代石化能源成為時勢所趨。太陽光電能兼具環保及源源不絕的優勢,為最主要的且也是最有效益的再生能源之一。
本論文利用太陽能電池,配合太陽能最大功率追蹤技術,與市電經過功率因數修正器後以直流並聯方式,達到節能之目的。所使用的最大功率追蹤演算法為增量電導法,比起常用的擾動觀察法更能準確的追蹤最大功率點,但因為功率因數修正器具有穩壓的功能,與最大功率追蹤器並聯後會影響所追蹤的最大功率點位置。因此本論文在最大功率追蹤器後再串聯一級DC/DC轉換器,使得太陽能電池的最大功率能夠完全輸出給後級。經由實作電路的實驗數據及波形,可以證明本系統可準確的將最大功率輸出給後級負載,並達到節省能源的目的。


Recently, due to global concern of energy shortage and environmental issues, it becomes urgent to seek a substitute for fossil fuel. Solar energy, which is natural and inexhaustible, is one of the most important and effective renewable energy resources.
This thesis fulfills a DC power source by paralleling a photovoltaic (PV) system with maximum power point tracking (MPPT) technique to a power factor corrector fed by the utility. The incremental conductance method, which is more accurate than the perturbation and observation method, is adopted to achieve MPPT. However, since the DC output voltage of the power factor corrector is regulated, the MPPT circuit might malfunction when parallel connected. Therefore, a converter is added following the MPPT circuit to realize the maximum transfer of solar energy. All the objectives stated above have been verified by experimental results on a prototype system.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 內容大綱 5 第二章 太陽能電池介紹 6 2.1 前言 6 2.2 太陽能電池簡介 7 2.3 太陽能電池原理 8 2.4 太陽能電池種類 10 2.5 太陽能電池電氣特性 13 第三章 太陽能最大功率追蹤 21 3.1 前言 21 3.2 最大功率追蹤技術 21 3.2.1 電壓回授法 22 3.2.2 功率回授法 23 3.2.3 擾動觀察法 24 3.2.4 增量電導法 25 3.2.5 直線近似法法 28 3.2.6 三點權位比較法 29 3.2.7 實際量測法 31 3.2.8 各種演算法之比較 32 3.3 微處理器Microchip PIC16F877之介紹 33 3.4 太陽能最大功率追蹤器 35 第四章 功率因數修正器 36 4.1 功率因數修正器簡介 36 4.2 功率因數修正器原理 38 4.2.1 功率因數修正器之種類 38 4.2.2 功率因數修正器架構 41 4.2.3 連續導通模式電流迴路控制模式 43 4.3 以UC3854設計之功率因數修正器 48 4.3.1 UC3854內部方塊圖及接腳說明 48 4.3.2 控制電路設計 50 4.4 設計實例 51 4.4.1 電感值計算 51 4.4.2 鐵心材質級繞線線徑選擇 52 4.4.3 輸出電容設計 53 4.4.4 功率開關的選擇 53 4.4.5 主二極體的選擇 54 4.4.6 橋式整流器的選擇 54 第五章 市電/太陽能並聯系統設計及數據波形分析 55 5.1 並聯系統分析 55 5.2 功率因數修正器500W之實驗波形及數據分析 59 5.3 太陽能最大功率追蹤器之實驗波形及數據分析 62 5.3.1 太陽能最大功率追蹤器串聯升壓式轉換器之數據分析 66 5.4 太陽能最大功率追蹤器與市電並聯前後之波形與數據 68 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來研究方向 72 參考文獻 73

[1] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics,” John Wiley & Sons, Inc., 2003.
[2] A. I. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 1998.
[3] J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. APEC’ 93, pp.267-273, May. 1993.
[4] J. W. Lim, and B. H. Kwon, “A power-factor controller for single-phase PWM rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 5. pp. 398-404, May 2002.
[5] S. Manias, “Novel full bridge semicontrolled switch mode rectifier,” IEE Proc. Electric Power Applications, vol. 138, no. 5, pp.252-256, Sept. 1991.
[6] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-206, 2001.
[7] C. A. Canesin, and I. Barbi, “Analysis and design of constant-frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” IEEE APEC’96, vol. 2, pp. 807-813, 1996.
[8] P. C. Todd, “UC3854 controlled power factor correction circuit design, ” Unitrode Application Note U-134.
[9] L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.

[10] P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
[11] D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT algorithms for rapidly changing environmental conditions,” 12th International Power Electronics and Motion Control Conference, pp. 1614-1619, 2006.
[12] J. H. Lee, H. S. Bae, and B. H. Cho, “Advanced incremental conductance MPPT algorithm with a variable step size,” 12th International Power Electronics and Motion Control Conference, pp. 603-607, 2006.
[13] Y. Yusof, S. H. Sayuti, M. A. Latif, and M. Z. C. Wanik, “Modeling and simulation of maximum power point tracker for photovoltaic system,” IEEE PECon’04, pp. 88-93, 2004.
[14] C. Dorofte, U. Borup, and F. Blaabjerg, “A combined two-method MPPT control scheme for grid-connected photovoltaic systems,” European Conf. Power Electronics and Applications, pages:10 pp., Sept. 2005.
[15] E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV Module for Grid-Connected PV Systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, 2006.
[16] N. Mutoh, M. Ohno, and T. Inoue, “A Method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1055-1065, 2006.

[17] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, “Integrated photovoltaic maximum power point tracking converter,” IEEE Trans. Industrial Electronics, vol. 44, no. 6, pp. 769-773, 1997.
[18] R. Leyva, C. Alonso, I. Queinnec, A. C. Pastor, D. Lagrange, and L. M. Salamero, “MPPT of photovoltaic systems using extremum - seeking control,” IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 1, pp. 249-258, 2006.
[19] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Aerospace and Electronic Systems, vol. 49, no. 1, pp. 217-223, 2002.
[20] Microchip, “PIC16F877,40-PIN 8-BIT CMOS FLASH Microcontroller,” Data sheet, 2001.
[21] 施慶隆,「PIC16F87X微控制器原理實習與專題應用」,全華科技圖書股份有限公司,2003。
[22] 曾軍浩,「高效能功率因數修正器研製」,國立台灣科技大學碩士論文,2006。
[23] 洪瑞鴻,「2kW功率因數修正器研製」,國立台灣科技大學碩士論文,2006。

無法下載圖示 全文公開日期 2012/07/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE