研究生: |
曾式群 Shih-Chun Tseng |
---|---|
論文名稱: |
使用細內建自我修復技術以提升快閃記憶體的良率及可靠度 Fine-Grained Built-In Self-Repair Techniques for Yield and Reliability Enhancement of Flash Memories |
指導教授: |
呂學坤
Shyue-Kung Lu |
口試委員: |
許鈞瓏
Jun-Long Xu 李進福 Jin-Fu Li 黃樹林 Shu-Lin Huang 王乃堅 Nai-Jian Wang 呂學坤 Shyue-Kung Lu |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 快閃記憶體 、良率 、可靠度 、修復率 、內建自我修復 |
外文關鍵詞: | flash memory, yield, reliability, repair rate, built-in self-repair |
相關次數: | 點閱:652 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
快閃記憶體為具有低功耗、可擴充性、高效能等優點的非揮發性記憶體,使其成為消費性電子產品中常見的儲存元件,像是固態硬碟、手機和筆記型電腦等產品。快閃記憶體的儲存方式是將電子儲存至浮閘中,隨著製程的進步,由單階儲存細胞 (Single-level Cell, SLC) 衍生出多階儲存細胞 (Multi-level Cell, MLC) 與三階儲存細胞 (Triple-level Cell, TLC),快閃記憶體的儲存密度不斷的提升,但同時也使記憶體細胞的雜訊邊界縮小,進而導致記憶體可靠度與耐久度的下降。而內建自我修復技術是常見的錯誤修正方式,但過去研究中提出的備用元件較不細緻,導致修復率、良率和可靠度皆無法有效提升。
因此,本論文提出細內建自我修復技術來解決這些問題,也提出本論文定義的故障模型,結合過去的故障模型並加以分類,而將過去較不細緻的備用元件,分成備用字、備用頁、備用行和備用非及型區塊四種備用元件來使用,利用提出的演算法將分類好的故障模型和配置的備用元件做合適的對應,以備用元件取代故障細胞,來有效地完成修復。
本篇研究實現了細內建自我修復技術的電路,並於1 GB之快閃記憶體上進行修復率、良率、可靠度和硬體成本分析。實驗結果顯示記憶體大小在1 GB,每個區塊平均瑕疵數目設為10,且位元可修復錯誤比率為0.8、頁可修復錯誤比率為0.1、行可修復故障比率為0.05、非及型區塊可修復故障比率為0.05時,每個區塊的備用元件總數為四個備用非及型區塊以及兩個備用行情況下,修復率可維持在 98% 以上,良率也仍可維持在 99% 以上,而在經過 1.5×106小時後仍可維持達0.9之可靠度,在條件相同下與粗內建自我修復技術比較,可接受可靠度若訂在0.9,約可延長2.7倍的使用壽命。
Flash memory is a non-volatile memory with the advantages of low power consumption, good scalability, and high performance, making it a common storage component in consumer electronic products, such as solid-state drives, mobile phones, and laptops. The storage method of flash memory is to store electrons in the floating gate. As the process progresses, multi-level cells (MLC) and triple-level cell (TLC) are derived from single-level cells (SLC), the storage density of flash memory continues to increase, but it also reduces reliability margin of the memory cells, which leads to decrease in memory reliability and endurance. The built-in self-repair techniques and error correction codes are the common fault tolerance techniques, but the spare elements proposed in the conventional research are coarse, resulting in the failure to improving the repair rate, yield, and reliability.
Therefore, we propose the fine-grained BISR (FGBISR) techniques to replace the conventional CGBISR techniques. Fine-grained spare units such as spare words, spare pages, spare columns, and spare NAND blocks can be used. Based on the fault behaviors and the conventional flash memory fault models, more sophisticated fault models are defined. Novel redundancy analysis algorithm is derived based on the new fault types
In this work, a circuit with FGBISR techniques is implemented, and repair rate, yield, reliability, and hardware overhead analysis are performed on a 1 GB flash memory. Experimental results show that when the average number of defects per block is set to 10, and the bit-repairable fault rate is 0.8, the page repairable fault rate is 0.1, the page repairable fault rate is 0.05, and the NAND block repairable failure ratio is 0.05, When the amount of spare components equal to four spare NAND blocks and two spare columns per block, the repair rate can be maintained above 98%, the yield can still be maintained above 99%. Reliability is 0.9 after 1.5×106 hours of use. Under the same conditions, compared with the CGBISR techniques. If the acceptable reliability is set at 0.9, the lifetime can be extended by about 2.7 times.
[1] Y. Li and K. N. Quader, “NAND flash memory: challenges and opportunities,” Computers, vol. 46, no.8, pp. 23-29, Aug. 2013.
[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
[3] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I: The three radiation sources,” IEEE Trans. Device and Materials Reliability, vol. 1, no. 1, pp. 17-22, Mar. 2001.
[4] W. Kuo, W. T. K. Chien, and T. Kim, “Reliability, yield, and stress burn-in,” Kluwer Academic Publishers, Boston, 1998.
[5] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness, and L. R. Nevill, “Bit error rate in NAND flash memories,” in Proc. IEEE Int’l Rel. Phys. Symp. (IRPS), pp. 9-19, Apr. 2008.
[6] S. Lin and D. J. Costello, Error control coding, 2nd ed., Englewood Cliffs, NJ: Pearson Prentice Hall, 2014.
[7] G. Forney, “On decoding BCH codes,” IEEE Trans. Information Theory, vol. 11, no. 4, pp. 549-557, Oct. 1965.
[8] M. Li, H. Chou, Y. Ueng, and Y. Chen, “A low-complexity LDPC decoder for NAND flash applications,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS), pp. 213-216, July 2014.
[9] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, “Error prediction LDPC and error recovery schemes for highly reliable solid-state drives (SSDs),” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2920-2933, Nov. 2013.
[10] Y. Y. Hsiao, C. H. Chen, and C. W. Wu, “Built-in self-repair schemes for flash memory,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 8, pp. 1243-1256, Aug. 2010.
[11] O. Ginez, J. M. Portal, and H. Aziza, “Reliability issues in flash memories: an on-line diagnosis and repair scheme for word line drivers,” in Proc. Int’l Workshop on Mixed-Signals, Sensors, and Systems Test, pp. 1-6, June 2008.
[12] Y. Y. Hsiao, C. H. Chen, and C. W. Wu, “A built-in self-repair scheme for NOR-type flash memory,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 114-119, Apr. 2006.
[13] S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays,” in Proc. IEEE Design and Test of Computers, vol. 4, no. 1, pp. 24-31, June 1987.
[14] J. Kim, S. Noh, S. Min, and Y. Cho, “A space-efficient flash translation layer for compact flash systems,” IEEE Trans. Consumer Electron, vol. 48, no. 2, pp. 366-375, May 2002.
[15] T. S. Chung, D. J. Park, S. Park, D. H. Lee, S. W. Lee, and H. J. Song, “A survey of flash translation layer,” Journal of Systems Architecture, vol. 55, no. 5-6, pp. 332-343, May 2009.
[16] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient flash translation layer for Compact Flash systems,” IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May 2002.
[17] R. Subramani, H. Swapnil, N. Thakur, B. Radhakrishnan, and K. Puttaiah, “Garbage Collection Algorithms for NAND Flash Memory Devices -- An Overview,” in Proc. Modeling Symp. (EMS), pp. 81-86, Nov. 2013.
[18] L. P. Chang, “On efficient wear-leveling for large-scale flash memory storage systems,” in Proc. ACM Symp. Applied Computing (ACM SAC), Mar. 2007.
[19] J. W. Hsieh, L. P. Chang, and T. W. Kuo, “Efficient on-line identification of hot data for flash-memory management,” in Proc. ACM Symp. Applied Computing (ACM SAC), pp. 838-842, Mar. 2005.
[20] R. Dekker, F. Beenker, and L. Thijssen, "Fault modeling and test algorithm development for static random-access memories," in Proc. IEEE Int’l Test Conf., pp. 343-352, Sept. 1988.
[21] IEEE 1005 standard definitions and characterization of floating gate semiconductor arrays, Piscataway, NJ: IEEE Standards Sept. 1999.
[22] J. C. Yeh, K. L. Cheng, Y. F. Chou, and C. W. Wu, “Flash memory testing and built-in self-diagnosis with march-like test algorithms,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 6, pp. 1101–1113, June 2007.
[23] M. G. Mohammad and L. Terkawi, “Fault collapsing for flash memory disturb faults,” in Proc. IEEE European Symposium on Test (ETS), pp. 142–147, May 2005.
[24] Stefano D. C., Fabiano M., Piazza R., and Prinetto P, “Exploring modeling and testing of NAND flash memories,” in Proc. IEEE Design & Test Symp. (EWDTS), pp. 47-50, Sept. 2010.
[25] C. T. Huang, J. R. Huang, C. F. Wu, C. W. Wu, and T. Y. Chang, “A programmable BIST core for embedded DRAM,” IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59-70, Jan. 1999.
[26] A. J. V. D. Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993.
[27] R. Nair, S. M. Thatte, and J. A. Abraham, “Efficient algorithms for testing semiconductor random-access memories,” IEEE Trans. Computers, vol. C-27, no. 6, pp. 572-576, June 1978.
[28] K. L. Cheng, J. C. Yeh, C. W. Wang, C. T. Huang, and C. W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 281-286, Apr. 2002.
[29] K. L. Cheng, J. C. Yeh, C. W. Wang, C. T. Huang, and C. W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 281-286, Apr. 2002.
[30] C. T. Huang, J. C. Yeh, Y. Y. Shih, R. F. Huang, and C. W. Wu, “On test and diagnostics of flash memories,” in Proc. IEEE Asian Test Symp. (ATS), pp. 260-265, Jan. 2005.
[31] S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays,” IEEE Design and Test of Computers, vol. 4, no. 1, pp. 24-31, June 1987.
[32] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu, “Built-in redundancy analysis for memory yield improvement,” IEEE Trans. Reliability, vol. 52, no. 4, pp. 386-399, Dec. 2003.
[33] S. K. Lu, C. L. Yang, Y. C. Hsiao, and C. W. Wu, “Efficient BISR techniques for embedded memories considering cluster faults,” IEEE Trans. VLSI Systems, vol. 18, no. 2, pp. 184-193, Feb. 2010.
[34] T. H. Wu, P. Y. Chen, M Lee, B. Y. Lin, C. W. Wu, C-H Tien, H. C. Lin, H. Chen, C. N. Peng, and M. J. Wang, “A memory yield improvement scheme combining built-in self-repair and error correction codes,” in Proc. Int’l Test Conference (ITC), pp. 5-8, Nov. 2012.
[35] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.
[36] R. F. Huang, J. F. Li, J. C. Yeh, and C. W. Wu, “A simulator for evaluating redundancy analysis algorithms of repairable embedded memories,” in Proc. IEEE Int’l Workshop Mem. Technol., Des. Testing (MTDT), pp. 68–73, July 2002.
[37] I. Koren and Z. Koren, “Defect tolerant VLSI circuits: techniques and yield analysis,” in Proc. IEEE, vol. 86, pp. 1817-1836, Sept. 1998.