簡易檢索 / 詳目顯示

研究生: 徐碩亨
Shuo-Heng Hsu
論文名稱: 直流微電網之功率硬體迴路模擬
A Power Hardware In the Loop Simulation of a DC Microgrid System
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 黃維澤
Wei-Tzer Huang
辜志承
Jyh-Cherng Gu
蘇健翔
Kin-Cheong Sou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 38
中文關鍵詞: 功率硬體迴路直流微電網光伏系統最大功率追蹤升壓轉換器電流控制
外文關鍵詞: Power Hardware In the Loop (PHIL), DC microgrid, photovoltaic system, MPPT, boost converter, current control
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

功率硬體迴路(Power Hardware In the Loop, PHIL)模擬是一種即時模擬,允許實際的功率設備交互於模擬的電源系統。隨著基於可再生能源的發電裝置(REBG)連接到主電網的需求不斷的增加,使功率硬體迴路模擬獲得高度的關注,因為其可以達到貼近實際的因素。因此,可以透過功率硬體迴路模擬準確預測可再生能源的發電裝置(REBG)對電網的影響。
本文的功率硬體迴路設置為與直流微電網對接的光伏系統,且使用的配置不同於常規的功率硬體迴路配置:
1. 在功率硬體迴路中的放大器使用的演算法是基於無差拍控制,其可以實現快速的動態響應,從而使功率硬體迴路模擬更接近真實的情況。
2. 功率裝置與模擬系統之間為諾頓-戴維寧電路的介面模型,而不是電壓-電流的介面模型,更適合實際的應用。
功率硬體迴路的結果與離線模擬結果相比,非常的吻合,證明了該方法的有效性。

關鍵字: 功率硬體迴路、直流微電網、光伏系統、最大功率追蹤、升壓轉換器、電流控制


Power hardware in the loop simulation (PHIL) is a real-time simulation allowing a real power device to interact with a simulated power system. With ever increase demand of interfacing renewable energy based generators (REBG) to the main grid, PHIL simulation has gained high attention as to the close-to-real phoneoma can be achieved. Hence, the impact of REBGs on the grid can be accurately predicted via PHIL.
In the thesis, a PHIL setup for a PV system interfacing a DC microgrid is carried out. The PHIL configuration used in this thesis has the attributes different from the conventional PHIL:
1. The control algorithm employed in the amplifier of the PHIL is based on dead-beat control. This allows fast dynamic response, .10312 PHIL simulation closer to the real phoneoma.
2. The interfacing algorithm between power device and simulated system is Norton-Thevenin circuit rather then voltage-current circuit, which is more suitable for practical implementation.
The PHIL results are in close agreement with those of offline simulation, justifying the validity of the proposed method.

Index Terms: Power-Hardware-In-the-Loop (PHIL), DC microgrid, photovoltaic system, MPPT, boost converter, current control

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Methods of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 PHIL CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 ITM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Modified ITM Interface . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Stability of the Modified ITM Interface . . . . . . . . . . . . . 10 2.2 DC Microgrid Model in Real-Time Simulator . . . . . . . . . . . . . . 14 3 POWER AMPLIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Bidirectional Buck-Boost Converter . . . . . . . . . . . . . . . . . . . 18 3.2 Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 PHIL EXPERIMENT SETUP . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 PHIL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Power Device under Test . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 Parameter of Power Device . . . . . . . . . . . . . . . . . . . . 24 4.2.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 iv 5 CONCLUSION & FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 35 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

[1] J. Martin, Distributed vs. centralized electricity generation: Are we witnessing
a change of paradigm? an introduction to distributed generation executive
summary content.
[2] F. Zhang, C. Meng, Y. Yang, C. Sun, C. Ji, Y. Chen, W. Wei, H. Qiu, and
G. Yang, Advantages and challenges of dc microgrid for commercial building
a case study from xiamen university dc microgrid, in 2015 IEEE First Inter-
national Conference on DC Microgrids (ICDCM), 2015, pp. 355358.
[3] J. Belanger, P. Venne, and J.-N. Paquin, The what, where, and why of real-
time simulation, Planet RT, pp. 3749, 01 2010.
[4] A. Hoke, S. Chakraborty, and T. Basso, A power hardware-in-the-loop frame-
work for advanced grid-interactive inverter testing, in 2015 IEEE Power En-
ergy Society Innovative Smart Grid Technologies Conference (ISGT), 2015, pp.
15.
[5] R. N. Andriamalala, Y. Wang, F. Colas, B. Francois, X. Guillaud, and E. Se-
mail, Power hardware in the loop simulation of wind farm contribution to grid
frequency control, in 2013 15th European Conference on Power Electronics
and Applications (EPE), 2013, pp. 18.
[6] C. S. Gehrke, A. C. Oliveira, A. M. N. Lima, and I. R. F. M. P. da Silva, Power
hardware-in-the-loop (phil) based on fpga, in 2013 Brazilian Power Electronics
Conference, 2013, pp. 298304.
[7] G. De Carne, G. Buticchi, and M. Liserre, Current-type power hardware in the
loop (phil) evaluation for smart transformer application, in 2018 IEEE Inter-
national Conference on Industrial Electronics for Sustainable Energy Systems
(IESES), 2018, pp. 529533.
[8] H. Kakigano, T. Hiraiwa, H. Fujiwara, Y. Miura, and T. Ise, An analysis
method of a dc microgrid using hardware-in-the-loop simulation, in 2012 IEEE
13th Workshop on Control and Modeling for Power Electronics (COMPEL),
2012, pp. 16.
36
[9] E. de Jong, R. Graa, P. Vaessen, P. Crolla, A. Roscoe, F. Lehfuss, G. Lauss,
P. Kotsampopoulos, and F. Gafaro, European White Book on Real-Time Power
Hardware-in-the-loop testing, 01 2012.
[10] W. Ren, M. Steurer, and T. L. Baldwin, Improve the stability and the accu-
racy of power hardware-in-the-loop simulation by selecting appropriate interface
algorithms, IEEE Transactions on Industry Applications, vol. 44, no. 4, pp.
12861294, 2008.
[11] R. Brandl, Operational range of several interface algorithms for dierent
power hardware-in-the-loop setups, Energies, vol. 10, no. 12, p. 1946, Nov
2017. [Online]. Available: http://dx.doi.org/10.3390/en10121946
[12] S. H. Zacchaeus, W. P. Q. Tong, and R. T. Naayagi, Modelling and simulation
of dc microgrid, in 2018 IEEE 4th Southern Power Electronics Conference
(SPEC), 2018, pp. 15.
[13] A. P. N. Tahim, D. J. Pagano, E. Lenz, and V. Stramosk, Modeling and stabil-
ity analysis of islanded dc microgrids under droop control, IEEE Transactions
on Power Electronics, vol. 30, no. 8, pp. 45974607, 2015.
[14] H. W. Dommel, Digital computer solution of electromagnetic transients in
single-and multiphase networks, IEEE Transactions on Power Apparatus and
Systems, vol. PAS-88, no. 4, pp. 388399, 1969.
[15] S. Bibian and H. Jin, High performance predictive dead-beat digital controller
for dc power supplies, in APEC 2001. Sixteenth Annual IEEE Applied Power
Electronics Conference and Exposition (Cat. No.01CH37181), vol. 1, 2001, pp.
6773 vol.1.
[16] C. Y. Liao, R. K. Subroto, I. S. Millah, K. L. Lian, and W. Huang, An improved
bat algorithm for more ecient and faster maximum power point tracking for
a photovoltaic system under partial shading conditions, IEEE Access, vol. 8,
pp. 96 37896 390, 2020.

無法下載圖示 全文公開日期 2025/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE