簡易檢索 / 詳目顯示

研究生: 權紀瑜
Chi-Yu Chuan
論文名稱: 臺灣建築光生物反應器與光伏系統之淨零探排效益評估
Assessing the Net Zero Carbon Contribution of Photobioreactor and Photovoltaic Systems in Taiwanese Buildings
指導教授: 江維華
Wei-Hwa Chiang
吳耀豐
Alchris Woo Go
口試委員: 江維華
Wei-Hwa Chiang
吳耀豐
Alchris Woo Go
邱韻祥
Yun-Shang Chiou
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 122
中文關鍵詞: 太陽能光浮系統光生物反應器系統再生能源減碳生物質綠藻建築立面
外文關鍵詞: Photovoltaic, Photobioreactor, Green Energy, Carbon Reduction, Biomass, Algae, Architecture Elevation
相關次數: 點閱:269下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以台灣不同地區商業建築立面為應用對象,探討太陽能光伏系統(PV)和微藻培養光生物反應器系統(PBR)之發電潛能和減碳效益。研究過程上,先以SolidWorks模擬小球藻NTU-H15之PBR設計,並且使用元晶太陽能所生產的TS72-BMH-530 H1太陽能板模組其功率高達20.5%,再使用Revit:Insight模擬日射取得,將數據整理為Netlogo程序,分析不同情境下的結果。研究結果顯示,在建築立面上,光生物反應器系統產生之沼氣和太陽能光伏系統具有相近的發電潛力。然而由於藻類的碳封存特性,光生物反應器系統更具減碳之優勢,其減碳效能較太陽能光伏系統高出4到7倍。本研究也發現,由於光生物反應器系統藻類的生長速度並非隨著日射量增加而線性成長,而是在達到臨界強度後趨向一個定值,因此特別適合使用於日射量中等之建築物立面。本研究之成果為建築師、決策者和其他利益相關人提供了更多再生能源選擇,也揭示其與永續建築設計整合發展之可能性。


    This research assesses the energy generation and carbon reduction potential of integrating solar photovoltaic cells (PV) and microalgal photobioreactors (PBR) systems on commercial building facades in various regions of Taiwan. By combining data from diverse sources, including literature reviews, SolidWorks simulations for PBR panels, and the use of PV panels TS72-BMH-530 H1 with an efficiency of 20.5%, alongside Netlogo for solar energy simulations, this study provides a comprehensive analysis.
    The findings reveal that PBR systems, cultivating Chlorella sp. NTU-H15 on building elevations, achieve electricity production comparable to PV systems. However, PBR systems stand out in carbon reduction due to algae's carbon sequestration capacity, reducing CO2 by approximately 5 to 8 times more than PV systems.
    Moreover, PBR systems exhibit a slight electricity production advantage at moderate sunlight intensities, while PV systems perform better in higher or lower intensities, identifying an optimal sunlight range for PBR systems' superior electricity generation.
    This research underscores the benefits of implementing PBR systems on building elevations, leveraging lower solar energy received on these surfaces. It provides practical insights for architects, policymakers, and stakeholders to optimize energy efficiency and carbon mitigation in the built environment.
    The study contributes to sustainable architectural design and renewable energy integration, advancing green energy adoption and carbon reduction strategies for Taiwan's buildings. Ultimately, this research paves the way for a cleaner and more sustainable architectural landscape.

    1 INTRODUCTION 1 1.1 BACKGROUNDS AND MOTIVATION 1 1.2 RESEARCH GOALS, OBJECTIVES, AND SIGNIFICANCE 4 1.3 SCOPE AND LIMITATIONS 6 2 LITERATURE REVIEW 8 2.1 PHOTOVOLTAIC (PV) SYSTEM 8 2.1.1 Performance Determinants 9 2.1.2 Production, and Operation 11 2.2 PHOTOBIOREACTOR(PBR) SYSTEM 12 2.2.1 Bio Intelligence Quotient (BIQ) House 14 2.2.2 Algae Cultivation 14 2.2.3 Anaerobic Digester 17 2.2.4 Algae: Chlorella sp., NTU-H15 18 2.3 COMPARISON 19 2.4 TAIWAN GEOGRAPHY 21 3 DATA GATHERING AND METHODOLOGY 25 3.1 SITE SELECTION 25 3.2 BUILDING SIZE 25 3.3 PV SYSTEM 26 3.4 PBR SYSTEM 28 3.5 NETLOGO PROGRAM 32 4 RESULTS AND ANALYSIS 40 4.1 TAIPEI CITY 40 4.2 TAINAN CITY 45 4.3 TAIPEI AND TAINAN SUNLIGHT INTENSITY 49 4.4 BUILDING COVERAGE 50 4.5 PV WATER-COOLING SYSTEM 52 4.6 RESULTS 52 5 DISCUSSION 59 5.1 COMPARATIVE ANALYSIS OF RESULTS 59 5.2 IMPACT 63 5.3 RESULTS AND RESEARCH ALIGNMENT 64 5.4 LIMITATION AND CONSTRAINTS 65 5.5 CONNECTING RESEARCH FINDINGS 66 6 CONCLUSION 68 6.1 KEY FINDING AND CONCLUDING REMARKS 68 6.2 SUGGESTION FOR FURTHER STUDIES 69 7 REFERENCES 71 8 APPENDIX 76

    Amin, A.A.E., Al-Maghrabi, M.A. The Analysis of Temperature Effect for mc-Si Photovoltaic Cells Performance. Silicon 10, 1551–1555 (2018). https://doi.org/10.1007/s12633-017-9639-5
    Biloria, N., & Thakkar, Y. (2019). Integrating algae building technology in the built environment: A cost and benefit perspective. ScienceDirect, 370–384.
    Chang, Ed-Haun & Yang, Shicheng. (2003). Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Botanical Bulletin of Academia Sinica. 44. 43-52.
    Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., & Lin, C.-S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 3389–3396.
    Dębowski, M., Grala, A., & Dudek, M. (2013). Algae biomass as an alternative substrate in biogas production technologies—Review. In M. Zieliński (Ed.), Renewable and Sustainable Energy Reviews (pp. 596–604). essay, ScienceDirect.
    Elnokaly, A., & Keeling, I. (2015). An Empirical Study Investigating the Impact of Micro-algal Technologies and their Application within Intelligent Building Fabrics. Procedia - Social and Behavioral Sciences, 712–723.
    Elsayed, Sherif H.N. & Boukis, N. & Kerner, Martin & Hindersin, Stefan & Patzelt, Dominik. (2014). Gasification of microalgae in supercritical water: Experimental results from the gasification of the algal spieces scenedesmus obliquus cultivated in the BIQ-House in Hamburg. 10.5071/22ndEUBCE2014-2AV.1.17.
    Ettah, Emmanuel & Obiefuna, Josiah & Nwabueze, & Njar, G. (2011). The relationship between solar radiation and the efficiency of solar panels in Port Harcourt, Nigeria. International Journal of Applied Science and Technology. 1.
    Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level. (2021). Internation Eneregy Agency.
    Hadipour, A., Zargarabadi, M. R., & Rashidi, S. (2020). An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 867–875.
    Kim, K.-H. (2014). Beyond Green: Growing Algae Facade. The ARCC Journal of Architectural Research.
    Koller, M., Tuffner, P., Koinigg, M., Böchzelt, H., Schober, S., Pieber, S., Schnitzer, H., Mittelbach, M., & Braunegg, G. (2012). Characteristics and potential of micro algal cultivation strategies: a review. In A. Salerno (Ed.), Journal of Cleaner Production (pp. 377–388). essay, ScienceDirect.
    Lakaniem, A.-M., Hulatt, C. J., Thomas, D. N., Tuovinen, O. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology for Biofuels and Bioproducts.
    Michael, P. R., Johnston, D. E., & Moreno, W. (2020). A conversion guide: solar irradiance and lux illuminance . Journal of Measurements in Engineering, 8(4).
    Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 869–877.
    Montingelli, M. E., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. In S. Tedesco (Ed.), Renewable and Sustainable Energy Reviews (pp. 961–972). essay, ScienceDirect.
    Mughal, Shafqat & Sood, Yog & Jarial, R.. (2018). A Review on Solar Photovoltaic Technology and Future Trends.
    Oncel, S. S., & Oncel, D. S. (2016). Facade integrated photobioreactors for building energy efficiency. In A. Köse (Ed.), Start-Up Creation: The Smart Eco-Efficient Built Environment (pp. 237–299). essay, Woodhead.
    Pathak, M. J. M., & Harrison, S. J. (2012). Effects on amorphous silicon photovoltaic performance from high-temperature annealing pulses in photovoltaic thermal hybrid devices. In J. M. Pearce (Ed.), Solar Energy Materials & Solar Cells (pp. 199–203). essay, ScienceDirect.
    Slade, R. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. In A. Bauen (Ed.), Biomass and Bioenergy (pp. 29–38). essay, ScienceDirect.
    Some Characteristics of Microalgae Isolated in Taiwan for Biofixation of Carbon Dioxide. (2009). 中央研究院植物學彙刊.
    Stelline, P. delle. (2014). BIQ House+SolarLeaf – the use of microalgae. POCACITO.
    Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., Luque, R., & Zhao, M. (2018). Sustainability Analysis of Microalgae Production Systems: A Review on Resource with Unexploited High-Value Reserves. Environ Science Technology, Arun, 14031–14049.
    Ward, A. J., & Green, F. B. (2014). Anaerobic digestion of algae biomass: A review. In D. M. Lewis (Ed.), Algal Research (pp. 204–214). essay, ScienceDirect.
    Ward, A. (2015). The Anaerobic Digestion of Halophytic Microalgae (thesis). The University of Adelaide, Adelaide.
    Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research, 204–214.
    Wolf, J., Steinbusch, S., Yarnold, J., Ross, I. L., Steinweg, C., Doebbe, A., Krolovitsch, C., Müller, S., Jakob, G., Kruse, O., Posten, C., & Hankamer, B. (2016). Multifactorial comparison of photobioreactor geometries in parallel microalgae cultivations. In E. Stephens (Ed.), Algal Research (pp. 187–201). essay, ScienceDirect.
    Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (n.d.). Global status of recycling waste solar panels: A review. ScienceDirect, 75, 450–458.
    肥水不落外人田沼氣發電化廢棄物為黃金. (2023). 綠能科技大步走.
    台灣地區有關太陽能日照量 之環境時空因素研究探討. (2006). 環境教育學刊.
    國家發展委員會, 臺灣2050淨零排放路徑及策略總說明 (2022). Taipei.
    中國文化大學大氣科學系、 國立臺灣大學大氣科學系、 國立科學工藝博物館科技教育組、 國家實驗研究院臺灣颱風洪水研究中心. (2017). (tech.). 氣候變遷下台灣颱風豪雨之變化與機制探討. 台北市, 台北.
    中華民國經濟部能源局. (2022). 110年度 我國燃料燃燒二氧化碳排放統計與分析. 中華民國經濟部能源局
    中華民國經濟部能源局. (2022, July 22). 經濟部公布最新全國電力資源供需報告及110、114年電力排碳係數. 中華民國經濟部. https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=100931
    水費及各項服務費收費標準. 台灣自來水公司. (2022). https://www.water.gov.tw/ch/Subject/Detail/1288?nodeId=813
    養豬廢水資源化利用於微藻養殖. (2013). Journal o f the Biomass Energy Society o f China, 32, 57–63.
    元晶太陽能板產品報告. 元晶太陽能科技股份有限公司. (2023). https://www.tsecpv.com/zh-tw/home/index

    QR CODE