簡易檢索 / 詳目顯示

研究生: 許婷婷
Ting-ting Hsu
論文名稱: 基於DSP控制之模組串聯併網型太陽能供電系統
Design and Implementation of a DSP-based-Module-Series Grid-Connected Photovoltaic System
指導教授: 羅有綱
Yu-kang Lo
口試委員: 劉益華
Yi-hua Liu
歐勝源
Sheng-yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 最大功率追蹤單級全橋式換流器併網技術
外文關鍵詞: Maximum Power Point Tracking, Single-stage Full-Bridge DC/AC Inverter, Grid-connected Technique
相關次數: 點閱:264下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,乾淨無污染的能源如太陽能光伏陣列、風力渦輪機和燃料電池等,已被開發利用於發展可再生能源發電系統。其中,快速進步的太陽能電池技術使得光伏發電系統有了重大的發展。太陽能發電的優點是得以乾淨的發電。但是目前太陽能電池板在不同的太陽照射、負載和溫度條件下,呈現範圍廣泛的電壓變化。故通常在光伏發電系統中使用最大功率追蹤控制技術以擷取最大功率。
    本論文研究使用數位訊號控制器做控制的模組化之光伏發電系統。選擇單級全橋式換流器做為電能模組的主要架構來實現最大功率追蹤,以期提供高品質的交流電壓。在本論文中設計與實現具有模組串聯與市網併聯技術之模組化光伏發電系統。最後也驗證本論文之理論與設計的可行性。


    Recently, clean energy resources such as photovoltaic arrays, wind turbines or fuel cells have been exploited for developing renewable electric power generation systems. In which, the rapid advances in solar cell technology have enabled the significant developments in photovoltaic power system. The solar power has the advantage of clean electricity generation. However, the solar panels present wide range of voltage variations under different solar irradiation, load and temperature conditions. A maximum power point tracking (MPPT) control is usually applied to extract maximum power from the photovoltaic system. In this thesis, a DSP-based single-stage full-bridge DC/AC inverter with MPPT function is studied for photovoltaic power systems. The developed DC/AC inverter can simultaneously provide high quality AC voltage and achieve MPPT operation with a simple single-stage circuit configuration. Series-connection and grid-connected techniques of the studied single-stage inverter is also designed and implemented for photovoltaic power systems. A laboratory prototype of the studied grid-connected PV system has been built and tested. Experimental results are shown to verify the feasibility of the proposed scheme.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 系統架構 2 1.3 論文內容大綱 7 第二章 太陽能電池與最大功率追蹤技術 8 2.1 前言 8 2.2 太陽能電池介紹 9 2.2.1太陽能電池原理 10 2.2.2太陽能電池種類 12 2.2.3太陽能電池電氣特性 15 2.3太陽能最大功率追蹤 20 2.3.1電壓回授法 20 2.3.2功率回授法 21 2.3.3擾動觀察法 22 2.3.4增量電導法 24 2.3.5直線近似法 27 2.3.6三點權位比較法 27 2.3.7實際量測法 30 2.3.8各種演算法之比較 30 第三章 太陽能市電併聯系統 32 3.1 前言 32 3.2 太陽能供電系統運轉型態介紹 33 3.2.1獨立運轉型 33 3.2.2併聯運轉型 34 3.3 單級大陽能市電併聯系統 36 3.3.1 鎖相迴路電流回授之市電併聯方式 36 3.3.2 零點偵測相位平移之市電併聯方式 37 3.4 單相式換流器 41 3.4.1 半橋式換流器基本架構 42 3.4.2 全橋式換流器基本架構 43 3.4.3 正弦胍波寬度調變 45 第四章 系統軟硬體規劃 53 4.1 模組串聯與市電併聯之分析 53 4.2 數位訊號處理器TMS320F2808之介紹與軟體流程規劃 55 4.3 單級單相換流器系統設計 59 4.3.1 功率開關驅動電路設計 60 4.3.2 換流器之輸入電壓電流取樣電路 62 4.3.3 輸入電容 65 4.3.4 換流器輸出電壓電流取樣電路 65 4.3.5 輸出濾波器 67 4.3.6 全橋式換流器之元件參數設計 68 4.4 太陽能電池等效電路 71 第五章 實驗數據與波形分析 74 5.1 單級單相全橋式換流器 74 5.2單級單相換流器之最大功率追蹤 75 5.3單級單相換流器之市電併聯數據與波形分析 81 5.4 太陽能模組串聯之市電併聯數據與波形分析 82 5.4.1 兩模組串聯之市電併聯測試 82 5.4.2三模組串聯之市電併聯測試 83 第六章 結論與未來展望 85 6.1 結論 85 6.2 未來研究方向 87 參考文獻 88

    [1]蔡宇泰譯,“太陽能”,光訊,No.49,pp.16-18,1994。
    [2] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
    [3] S. Nonaka, K. Kesamaru, K.Yamasaki, and M.Nishi, “Interconnection System with Single Phase IGBT PWM CSI Between Photovoltaic Arrays and Utility Line”, IEEE IAS, pp.1302-1307,1990.
    [4] U. Herrmann and H. G. Langer, “Low Cost DC to AC Converter for Photovoltaic Power Conversion in Residential Applications”,IEEE PESC,pp.588-594,1993.
    [5] 李天鵬,“市電與太陽能電池直流並聯供電系統”,國立台灣科技大學電子工程研究所碩士論文,2006。
    [6] S. Nonaka and Y. Neba, “Single Phase PWM Current Source Converter with Double-Frequency Parallel Resonance Circuit for DC Smoothing”, IEEE IAS,pp.1144-1151,1993.
    [7] S. Nonaka, “A Utility-Connected Residential PV System Adapted a Novel Single-Phase Composite PWM Voltage Source Inverter”,IEEE PVSC,pp.1064-1068,1994.
    [8] 謝宏燦,“基於DSP控制之獨立型太陽能供電系統”,國立台灣科技大學電子工程研究所碩士論文,2009。
    [9] 李建興,“太陽能系統最大功率追蹤與電池充電技術研究”,國立台灣科技大學電子工程研究所碩士論文,2008。
    [10] D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions,” 12th International Power Electronics and Motion Control Conference, pp. 1614-1619, 2006.
    [11] J. H. Lee, H. S. Bae, and B. H. Cho, “Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size,” 12th International Power Electronics and Motion Control Conference, pp. 603-607, 2006.
    [12] Y. Yusof, S. H. Sayuti, M. A. Latif, and M. Z. C. Wanik, “Modeling And Simulation Of Maximum Power Point Tracker for Photovoltaic System,” IEEE PECon’04, pp. 88-93, 2004.
    [13] C. Dorofte, U. Borup, and F. Blaabjerg, “A Combined Two-Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems,” European Conf. Power Electronics and Applications, pp.10 , 2005.
    [14] E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV Module for Grid-Connected PV Systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, 2006.
    [15] N. Mutoh, M. Ohno, and T. Inoue, “A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions For PV Generation Systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1055-1065, 2006.
    [16] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, “Integrated Photovoltaic Maximum Power Point Tracking Converter,” IEEE Trans. Industrial Electronics, vol. 44, no. 6, pp. 769-773, 1997.
    [17] R. Leyva, C. Alonso, I. Queinnec, A. C. Pastor, D. Lagrange, and L. M. Salamero, “MPPT Of Photovoltaic Systems using Extremum - Seeking Control,” IEEE Trans. Aerospace and Electronic Systems, vol. 42, no. 1, pp. 249-258, 2006.
    [18] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-Current Pulse-Based Maximum Power Point Tracking Method for Multiple Photovoltaic and Converter Module System,” IEEE Trans. Aerospace and Electronic Systems, vol. 49, no. 1, pp. 217-223, 2002.
    [19] Ned Mohan, Tore M. Undeland, and William P. Robbins, “Power Electronics: Converters, Applications, and Design”, 2nd ed., John Wiley and Sons, New York, 1995.
    [20] Ali Emadi, Abdolhosein Nasiri, and Stoyan B. Bekiarov, “Uninterruptible Power Supplies and Active Filters,CRC press”,
    Boca Raton, 2004.
    [21] 林豐盛,“以FPGA實現單級式光伏能量轉換系統”,國立成功大學電機工程研究所碩士論文,1994。
    [22] 陳慶書,“基於FPGA控制單級最大功率追蹤換流器”,國立台灣科技大學電子工程研究所碩士論文,2009。
    [23] Xlinx, “Spartan-3E FPGA Family Complete Data Sheet”,Xilinx Inc., 2008.
    [24] Linear Technology, “Serial 12-Bit/14-Bit,3Msps Simultaneous Sampling ADCs with Shutdown”Linear Technology Corporation,
    2003.
    [25] Linear Technology, “Dual Programmable Gain Amplifiers with Serial Digital Interface,” Linear Technology Corporation,2003.
    [26] Texas Instruments, “TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, and TMS320F2801xDSPs Data Manual,” Datasheet, Oct. 2003.
    [27] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A Review of Single Phase Grid-Connected Inverters for Photovoltaic Modules," IEEE Transactions on Industry Applications, vol. 41,no.5, pp.1296-1306, 2005

    無法下載圖示 全文公開日期 2015/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE