簡易檢索 / 詳目顯示

研究生: 賴科亨
Ke-heng Lai
論文名稱: CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不鏽鋼基板之電性研究
Low temperature CO2 laser annealing of PZT thin films on stainless steel substrates
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蘇裕軒
Yu-Hsuan Su
余志成
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 鐵電薄膜緩衝層CO2雷射退火鋯鈦酸鉛錳酸鍶鑭
外文關鍵詞: PZT, LSMO, thin films, CO2 LASER, buffer layer
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用CO2低溫雷射退火製程,將鋯鈦酸鉛(PZT)鐵電薄膜與錳酸鍶鑭(LSMO)氧化物電極鍍製於316型不鏽鋼線與薄板基板上,以改善傳統爐內退火常導致線狀或薄板型鐵電元件產生界面擴散與氧化等問題,用以開發相關的可撓性元件。
研究結果顯示PZT/LSMO/SUS316鐵電結構元件,經過高溫長時間的傳統爐內退火熱處理,表面易生成氧化物,破壞了LSMO鍍層之結構性,導致PZT鍍膜品質劣化、漏電流過大,並影響鐵電特性,無法得到飽和的電滯曲線。在不鏽鋼薄板基材方面,傳統爐內退火試片之殘留極化值(Pr)為4.3μC/cm2,矯頑電場值(Ec)為288.3kV/cm,漏電流密度約為10-6A/cm2。使用CO2雷射退火取代爐內退火,在雷射功率95W/cm2_95s照射下,可使其Pr值提升至17.9μC/cm2, Ec值下降至126.3kV/cm,漏電流密度降為10-9A/cm2。另在不鏽鋼線基材方面,使用傳統爐內退火之其PE0值為2.9μC/cm2, EP0值為290kV/cm,漏電流密度約為10-5A/cm2;使用CO2雷射退火取代爐內退火,在雷射功率59W/cm2_45s照射下,可使其PE0值提升至9.8μC/cm2,EP0值下降至165kV/cm,漏電流密度降為10-7A/cm2。
再者,本文亦利用電解拋光方式來改善不鏽鋼線表面狀況,電解拋光後之PZT/LSMO/SUS316線狀結構,再使用雷射功率59W/cm2_45s照射下,其PE0值可提升至12.9μC/cm2,EP0值下降至146.5kV/cm,漏電流密度降為10-8A/cm2,已十分接近於光滑SUS316薄板上鍍製LSMO、PZT薄膜元件的鐵電性,可見基材的表面狀況影響鐵電特性甚大。
最後,將上述PZT/LSMO/SUS316 線狀試片彎曲成不同曲率半徑(r)測試其可撓性,發現當r值小於0.7mm以下,易使PZT/LSMO界面發生膜裂情形;在r值為20mm以上,則可避免PZT與LSMO界面發生膜裂情形,並且滿足一般撓曲應用之需求。因此,本研究所開發之線材結構大幅提升鐵電可撓性元件製作的可能性。


In this study, Pb(Zr0.52Ti0.48)O3(PZT) and La0.7Sr0.3MnO3 (LSMO) ferroelectric thin films were coated on stainless steel substrates of planar and micro wire shaped using sol-gel process, spin coating and sputtering technques. The phase structure of the films was successfully transformed from pyrochlore to perovskite phase using low temperature CO2 laser annealing. The interfacial property between different components was significantly improved using laser annealing process in order to develop flexible components.

Microstructural analysis reveals that the furnace annealed films causes to generate oxide elements on the surface due to high temperature annealing. The growth of oxide elements started from the surface of the substrate and grown upto the surface of LSMO by which the adhesion between LSMO and PZT is reduced. Hence the leakage current increased to maximum. This resulted in degrading the film quality and ferroelectric property.

Furnace annealed PZT film coating on planar stainless steel substrate showed ferroelectric remanent polarization of 4.3μC/cm2 and coercive field of 288.3kV/cm. The remanent polarization and coercive fields were improved significantly to 17.9μC/cm2 and 126.3kV/cm by using low temperature CO2 laser annealing. This might be due to decrease in leakage current from 10-6 to 10-9 A/cm2 and enhanced interfacial property between different components.

Similar behavior is observed in the case of PZT films coated on wire shaped stainless steel substrate. The remanent polarization increased from 2.9 to 9.8μC/cm2 and coercive field decreased from 290 to 165kV/cm. Moreover, the improvement in leakage current density is from 10-5 to 10-7 A/cm2. The microstructure of the wire shaped stainless steel substrate surface showed the pores, grown oxides and defects. Hence, a new process was used to overcome the defects and surface property. Electropolishing technique was carried out to improve the surface property as well as interfacial property between substrate and buffer layer. The surface condition was enhanced by applying voltage of 2V for 150 sec in electropolishing process. The ferroelectric hysteresis loop of PZT films with wire shaped stainless steel substrates after electropolishing show remanent polarization of 12.9μC/cm2 and coercive field of 146.5kV/cm. In addition the leakage current also decreased to 10-8A/cm2. This result is closer to the ferroelectric property obtained for the films with planar shaped stainless steel substrates. Hence it can be concluded that the surface property and interfacial condition has a major role in increasing the property.

Finally, the flexible characteristic was tested using the bending property of the wire. When the wire is bent into the curve of radius 20mm, the surface structure is found stable without any macro cracks. But, cracks were observed by increasing the bending strength upto the radius of curvature to 0.7mm. This indicates that the bending upto the radius of curvature 20mm is an appropriate condition to meet the requirements for flexible device.

摘 要i Abstractiii 致 謝v 目 錄vii 表 目 錄xii 圖 目 錄xiii 第一章 前 言1 第二章 文獻回顧4 2.1 鐵電材料4 2.1.1 鐵電材料定義4 2.1.2 鈣鈦礦結構之鐵電材料5 2.1.3 鋯鈦酸鉛結構7 2.1.4 鋯鈦酸鉛鐵電薄膜發展現況9 2.1.5 鋯鈦酸鉛材料應用9 2.2 電極材料14 2.2.1 氧化物電極15 2.2.2 鐵電元件結構之氧化物電極相關文獻回顧16 2.2.3 不鏽鋼基板18 2.2.4 鐵電元件結構之不鏽鋼基板相關文獻回顧19 2.3 薄膜製備方法20 2.3.1 溶膠-凝膠法製備鐵電薄膜21 2.3.2 溶劑特性的選擇22 2.3.3 薄膜覆膜方式22 2.3.4 低溫焦化熱處理23 2.3.5 高溫結晶與緻密化熱處理24 2.4 雷射退火25 2.4.1 連續波長雷射退火25 2.4.2 CO2雷射退火相關應用回顧26 2.5 電解拋光28 2.6 材料系統設計31 第三章 實驗方法與步驟33 3.1 實驗流程33 3.2 電解拋光34 3.3 錳酸鍶鑭2吋靶材製備35 3.4 錳酸鍶鑭磁控式濺鍍薄膜37 3.5 sol-gel法製備PZT前置溶液38 3.6 PZT薄膜旋鍍40 3.6.1 線型結構試片PZT薄膜旋鍍41 3.7 CO2低溫雷射退火42 3.8上電極製作43 3.8.1 線型結構上電極製作44 3.9 特性量測45 3.9.1 X-ray 繞射分析儀45 3.9.2 掃描式電子顯微鏡45 3.9.3 極化值與電場(PE)量測45 3.10 實驗藥品規格與儀器總表46 第四章 結果與討論49 4.1 錳酸鍶鑭靶材X-ray繞射分析49 4.1.1 薄膜濺鍍參數50 4.2 溶膠凝膠法製備鋯鈦酸鉛溶液之熱重分析51 4.3 傳統爐內退火之試片分析54 4.3.1 不鏽鋼薄板型結構試片54 4.3.1.1 不鏽鋼薄板型結構試片X-ray繞射分析54 4.3.1.2 不鏽鋼薄板型結構試片SEM微觀分析57 4.3.1.3 不鏽鋼薄板型結構試片之鐵電特性59 4.3.2 不鏽鋼線狀結構試片61 4.3.2.1 不鏽鋼線狀結構試片SEM微觀分析61 4.3.2.2 不鏽鋼線狀結構試片之鐵電特性65 4.4 CO2雷射退火之試片分析67 4.4.1 不鏽鋼薄板型結構試片68 4.4.1.1 不鏽鋼薄板型結構試片X-ray繞射分析68 4.4.1.2 不鏽鋼薄板型結構試片SEM微觀分析70 4.4.1.3 不鏽鋼薄板型結構試片之鐵電特性75 4.4.2 不鏽鋼線狀結構試片78 4.4.2.1 不鏽鋼線狀結構試片SEM微觀分析78 4.4.2.2 不鏽鋼線狀結構試片之鐵電特性81 4.5 不鏽鋼線電解拋光86 4.5.1 不鏽鋼線經電解拋光後之SEM微觀分析88 4.6不鏽鋼線狀結構試片經電解拋光後之鐵電特性90 4.7 機械性質測試93 4.7.1拉力測試93 4.7.2可撓性測試95 第五章 結論與未來展望96 5.1結論96 5.2未來展望97 第六章 參考文獻98

1.Francis, D.L.P.a.L.F., Ferroelectric Thin Films in Micro-electromechanical Systems Applications. MRS BULLETIN, 1996: p. 59~65.
2.D. Damjanovic, P.M., N. Seter, Ferroelectric device. IEEE Sensor jounra, 2001. 1(3).
3.E. Defay, C.M., C. Malhaire, and D. Barbie, PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane. Sensors and Actuators A, 2002: p. 3268.
4.H. Kueppers, T.L., U. Schnakenberg, W. Mokwa, M. Hoffmann, T. Schneller, and a.R.W. U. Boettger, PZT thin films for piezoelectric microactuator applications. Sensors and Acturators A, 2002: p. 680-684.
5.蔡昇達, 二氧化碳雷射處理鋯鈦酸鉛鐵電厚膜於不同基材之電性研究. 國立台灣科技大學碩士論文, 民國96年7月.
6.Cho, C.R., Heteroepitaxial growth and switching behaviors of PZT(53/47) films on LaNiO3-deposited LaAlO3 and SrTiO3 substrates. Materials Science and Engineering B, 1999. 64(2): p. 113-117.
7.Van Genechten, D., et al., Phase evolution of sol-gel prepared Pb(Zr0.3Ti0.7)O3 thin films deposited on IrO2/TiO2/SiO2/Si electrodes. Thin Solid Films, 2004. 467(1-2): p. 104-111.
8.Wang, Y.P., et al., C-V characteristics of Pt/PbZr0.53Ti0.47O3/LaAlO3/Si and Pt/PbZr0.53Ti0.47O3/La0.85Sr0.15CoO3/LaAlO3/Si structures for ferroelectric gate FET memory. Applied Surface Science, 2003. 205(1-4): p. 176-181.
9.Liu, B.T., et al., Comparison of Pb(Zr, Ti)O3 capacitors sandwiched with conductive La0.5Sr0.5CoO3 and non-conductive Bi3.25La0.75Ti3O12 layers. Materials Letters, 2007. 61(14-15): p. 3045-3047.
10.Jiang, S.W., et al., Texture control of Pb(Zr, Ti)O3 thin films with different post-annealing processes. Applied Surface Science, 2006. 252(24): p. 8756-8759.
11.Weaver, E.M.G.a.L., Phase Transformations in Rapid Thermal Processed Lead Zirconate Titanate. J. Mater. Res., 1995. 10(12): p. 3149~3159.
12.周嘉峰, 雷射退火低溫製備鋯鈦酸鉛鐵薄膜之研究. 國立台灣科技大學碩士論文, 民國90年7月.
13.潘漢昌, 鐵電薄膜雷射低溫製程與電性提昇研. 國立台灣科技大學博士論文, 民國92年7月.
14.Franco Jona, G.S., Ferroelectric Crystals. Dover Publications, 1993: p. 11~14.
15.Xu, Y.H., Ferroelectric Materials and Their Applications. North-Holland,New York,, 1991(102).
16.Herber, A.L.M.a.I.M., Electroceramics. Chapman and Hall, New York, U.S.A., 1990.
17.汪健民, 強介電陶瓷薄膜專題緒論. 工業材料. 第107期: p. 44~48.
18.Nomura, T.M.a.S., Ferroelectrics and related substances. Springer-Verlag, New York, 1981: p. 426.
19.Damjanovic, D.M., P.; Setter, N.;, Ferroelectric sensors. Sensors Journal, IEEE, 2001. 1(3): p. 191 - 206
20.Xiong, S., et al., Piezoelectric properties of PZT films prepared by the sol-gel method and their application in MEMS. Thin Solid Films, 2007. In Press, Corrected Proof.
21.Alkoy, S., H. Yanik, and B. Yapar, Fabrication of lead zirconate titanate ceramic fibers by gelation of sodium alginate. Ceramics International, 2007. 33(3): p. 389-394.
22.Kim, J.-W. and J.G. Heinrich, Influence of processing parameters on microstructure and ferroelectric properties of PZT-coated SiC fibers. Journal of the European Ceramic Society, 2005. 25(9): p. 1637-1645.
23.HIROSHI, S., Study on Metal Core-assisted Piezoelectric Complex Fiber Transactions of the Japan Society of Mechanical Engineers. A, 2004. 70(695): p. 1009-1014.
24.劉柏亨, CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不同基材之電性研究. 國立台灣科技大學碩士論文, 民國95年7月.
25.Suk Shin, D., et al., Characteristics of Pt/SrTiO3/Pb(Zr0.52, Ti0.48)O3/SrTiO3/Si ferroelectric gate oxide structure. Thin Solid Films, 1999. 354(1-2): p. 251-255.
26.Suzuki, H., et al., Orientation control and electrical properties of PZT/LNO capacitor through chemical solution deposition. Journal of the European Ceramic Society, 2006. 26(10-11): p. 1953-1956.
27.Guo, Y., et al., The performance of Pt bottom electrode and PZT films deposited on Al2O3 /Si substrate by using LaNiO3 film as an adhesion layer. Solid State Communications, 2008. 145(7-8): p. 413-417.
28.Sung-Min, Y., T. Eisuke, and I. Hiroshi, Preparation of PbZrxTi1 - xO3/La1 - xSrxCoO3 heterostructures using the sol-gel method and their electrical properties. Applied Surface Science, 1997. 117-118: p. 447-452.
29.Guerrero, C., et al., Pulsed laser deposition of epitaxial PbZrxTi1-xO3 ferroelectric capacitors with LaNiO3 and SrRuO3 electrodes. Applied Surface Science, 2000. 168(1-4): p. 219-222.
30.Sands, L.T.a.T., Epitaxial ferroelectric (Pb,La)(Zr,Ti)O3 thin film on tainless steel by excimer laser liftoff. Appl. Phys. Lett., 1999. 76(2): p. 227~229.
31.Wu, T.-J. and D.-S. Tsai, Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes. Materials Chemistry and Physics, 2004. 85(1): p. 88-95.
32.Ray, S.C., et al., RF magnetron sputtering ferroelectric PbZr0.52Ti0.48O3 thin films with (001) preferred orientation on colossal magneto-resistive layers. Materials Letters, 2006. 60(13-14): p. 1714-1718.
33.Che, L., et al., The effect of LaNiO3 buffer layer thickness on the electric properties of Pb(Zr0.53Ti0.47)O3 thin films deposited on titanium foils. Materials Letters, 2007. 61(14-15): p. 3068-3070.
34.Q. Zou, H.E.R.a.B.G.Y., Dielectric properties of lead zirconate titanate thin films deposited on metal foils. Appl. Phys. Lett, 2000. 77(7): p. 1038~1040.
35.Q. Zou, H.E.R.a.B.G.Y., Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers. Appl. Phys. Lett, 2001. 79(9): p. 1282~1284.
36.Jin-Rong Cheng, W.Z., Nan Li and L. Eric Cross, Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48)O3 thin film on a PbTiO3-coated stainless steel substrate. Appl. Phys. Lett., 2002. 81(25): p. 4805~4807.
37.C.J. Brinker, A.J.H., P.R. Schunk, G.C. Frye and C.S. Ashley, Review of sol-gel thin film formation. Journal of Non-Crystalline Solids, 1992(147&148): p. 424-436.
38.C. J. Brinker, A.J.H., P. R. Schunk, G. C. Frye, and C. S. Ashley,, Review of Sol-Gel Thin Film Formation. J. Non-Cryst. Solids., 1992(147&148): p. 424-436.
39.Y. Matsui, M.O., N. Fujita, and Y. Hamakawa, Laser annealing to produce ferroelectric-phase PbTiO3 thin films. J. Appl. Phys., 1981. 52(8): p. 5107~5111.
40.Chia-Fong Chou, H.-C.P.a.C.-C.C., Electrical Properties and Microstructures of PbZrTiO3 Thin Films Prepared By Laser Annealing Techniques. Jpn. J. Appl. Phys., 2002. 141(11B): p. 6679~6681.
41.賀陳弘、魏水文、巴白山, 電化學拋光技術. 機械工業雜誌, 1997: p. 122-128.
42.Lee, S.-J. and J.-J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. Journal of Materials Processing Technology, 2003. 140(1-3): p. 206-210.
43.陳裕豐, 高潔淨閥件之流道表面處理-電解拋光(EP)技術. 機械工業雜誌, 1997: p. 230-240.

無法下載圖示 全文公開日期 2010/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE