簡易檢索 / 詳目顯示

研究生: 高詩婷
Shih-Ting Kao
論文名稱: 包覆奈米銀粒子聚氨酯電紡纖維於傷口敷料的應用潛力評估
Evaluation of silver nanoparticles-incorporating polyurethane-based nonwoven mats for using as antimicrobial dressings on wound management
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 謝明發
Ming-Fa Hsieh
王毓淇
Yu-Chi Wang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 146
中文關鍵詞: 聚氨酯奈米銀粒子靜電紡絲
外文關鍵詞: Polyurethane, Nanoparticles, Electrospun
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

將聚氨酯(Polyurethane)與奈米銀粒子利用靜電紡絲系統下,製備出具有潛力可以治療感染型傷口的敷材。本研究利用多元醇化學還原法製備出奈米銀粒子,分別以不同濃度(0.17 M與0.34 M)與聚氨酯結合,製備出0.17 M與0.34 M Ag/PU nonwoven mats。透過傅立葉轉換紅外線光譜(FT-IR)與X射線光電子能譜儀(XPS)分析下,發現聚氨酯的硬片段與奈米銀粒子產生作用力。在穿透式電子顯微鏡下(TEM)觀察下,發現奈米銀粒子確實包覆於聚氨酯電訪纖維內部。在場發射掃描電子顯微鏡(FE-SEM)拍攝Ag/PU nonwoven mats表面型態,利用ImageJ的DiameterJ影像分析得到其孔隙率均為50.52~53.61%、孔隙面積0.37~0.64 μm2與纖維直徑175.7~260.5 nm。在對金黃色葡萄球菌(Staphylococcus aureus,BCRC10781)的抑菌圈測試(Inhibition zone test)結果中,定性分析出Ag/PU nonwoven mats確實具有抑菌表現。在Agar extraction process測試下,定量分析出Ag/PU nonwoven mats具有98.26~99.84 %的殺菌率。在透氣性測試(BS EN13726-2:2002)方面,Ag/PU nonwoven mats顯示具有1440.67~1664.33 g/m2高度的透氣能力,在吸水性測試(BS EN13726-1:2002),Ag/PU nonwoven mats具有0.26 g/cm3吸水量,在銀離子釋放測試(Silver-ion release)中,在0~12小時銀離子被大量釋放,而最大釋放量為0.69 μg/mL,持續到44小時都有銀離子被釋放。在細胞毒性測試方面,細胞存活率都在90%以上,顯示最大釋放量並不會產生細胞毒性。在抗發炎能力測試中,發現Ag/PU nonwoven mats具有抗發炎能力。而活體動物實驗中,在小黑鼠(C57BL6/J mice)背部全皮切開手術(1.2 cm×1.2cm)後,進行非感染動物實驗,總共四組(Aquacel、PU、0.17 M與0.34 M),經過十天,Aquacel組傷口癒合程度21.48 %,PU組為28.51%,0.17 M為42.12%,0.34 M為35.02 %。最後進行感染動物實驗,經過四天,Aquacel組傷口癒合程度22.05%,PU組為57.08%,0.17 M為48.75%,0.34 M為43.72%。在病理切片分析中,膠原蛋白纖維的緻密程度最好為0.17 M。


The study of antimicrobial Polyurethanecro-based dressings, is reported in here. Polyvinylpyrrolidone (PVP) protected silver nanoparticles were produced by chemical reduction method using ethylene glycol as the reducing agents silver nanoparticles. Fourier transform infrared spectroscopy (FT-IR) and high resolution X-ray photoelectron spectrometer (XPS) confirmed the chemical interaction between the hard segments of PU and silver nanoparticles. Transmission Electron microscopes (TEM) indicated that silver nanoparticles is extrapped in/on the nonwoven mats. The morphology and diameter of Ag/PU nonwoven mats are investigated by high resolution field-emission scanning electron microscope (FE-SEM). The Ag/PU nonwoven mats are composed of electrospun fiber with 175.7~260.5 nm in diameter. The images of FE-SEM revealed the porosity in 50.52~53.61% and pore area in 0.37~0.64 μm2 estimated by DiameterJ created for ImageJ. The qualitative antimicrobial analysis based on the inhibition zone test confirmed the antimicrobial activity and the quantitative analysis based on agar extraction process represented the antimicrobial death rate of 98.26~99.84% against Staphylococcus aureus (BCRC10781). The Ag/PU nonwoven mats showed good permeability and absorption according to moisture vapour transmission rate (MVRT) and water absorbency, respectively. In Ag ion release profile, we found that Ag ion reveals the burst release within 12 hours, showing maximum concentration at 0.69 μg/mL, and releases continuously up to 44 hours. Cytotoxicity assay showed that Ag/PU nonwoven mats reveal no significant cytoxicity toward fibroblast cell. LPS-induced macrophage test showed that Ag/PU nonwoven mats have anti-inflammatory ability. In vivo, full thickness skin removal (1.2×1.2 cm) was performed on the back of C57BL6/J mice in noninfected and infected animal models. Four groups of functional dressings were tested in this work including Aquacel, PU, 0.17M, and 0.34 M. After 10 days of treatment in infected animal models, Aquacel, PU, 0.17 M and 0.34 M were the closure area of the wound falling within 21.48%, 28.51%, 42.12% and 35.02%, respectively. After 10 days of treatment in fected animal models, Aquacel, PU, 0.17 M and 0.34 M were the closure area of the wound falling in infected animal models within 22.05%, 57.08%, 48.75% and 43.72%, respectively. Based on the histological analyses, the 0.17 M treated group outperformed all other groups in wound healing.

摘要…………………………………………………………………...………………..I ABSTRACT……………………………………...………………………………..…II 致謝……………………………………………………………………………..……III 目錄…………………………………………………………………………………..IV 表目錄……………………………………………………………………………...VIII 圖目錄………………………………………………………………………………..IX 第一章、緒論…………………………………………………………………………1 1.1研究動機與目的…………………………………………………………………..1 1.2實驗流程…………………………………………………………………………..2 第二章、文獻回顧……………………………………………………………………3 2.1皮膚構造與功能…………………………………………………………………..3 2.1.1表皮層……………………………………………………………………...3 2.1.2真皮層………………………...……………………………………………4 2.2傷口護理…………………………………………………………………………..4 2-2-1傷口癒合機制……………………………………………………………...4 2-2-2預備傷口床系統…………………………………………………………...6 2-2-3傷口敷料種類……………………………………………………………...6 2.3靜電紡絲…………………………………………………………………………..8 2.3.1靜電紡絲原理……………………………………………………………...8 2.3.2靜電紡絲影響參數………………………………………………………...9 2.4奈米銀粒子………………………………………………………………………10 2.4.1化學還原法製作奈米銀粒子原理……………………………………….10 2.4.2奈米銀粒子抑菌原理…………………………………………………….11 2.5聚氨酯……………………………………………………………………………12 2.5.1聚氨酯化學結構………………………………………………………….12 2.5.1.1合成聚氨酯………………………………………………………..12 2.5.1.2軟片段……………………………………………………………..13 2.5.1.3硬片段……………………………………………………………..13 2.5.1.4結構型態…………………………………………………………..13 2.5.2醫療等級高分子………………………………………………………….14 2.6金黃色葡萄球菌…………………………………………………………………14 2.7奈米銀粒子與各種基材的靜電紡絲系統之彙整………………………………14 第三章、材料與方法………………………………………………………………...18 3.1藥品及材料………………………………………………………………………18 3.2儀器………………………………………………………………………………19 3.3實驗步驟…………………………………………………………………………21 3.3.1奈米銀粒子製備…………………………………………………....…….21 3.3.2 PU電紡薄膜製備………………………………………………………...21 3.3.3含奈米銀粒子電紡薄膜製備(Ag/PU nonwoven mats)………………….22 3.3.4金黃色葡萄球菌培養…………………………………………………….23 3.3.4.1 LB agar plate製備…………………………………………………23 3.3.4.2金黃色葡萄球菌培養……………………………………………..23 3.3.5奈米銀粒子抑菌圈測試(Inhibition zone test)……………………………24 3.3.6電紡薄膜抑菌圈測試(Inhibition zone test)………………………………25 3.3.7電紡薄膜殺菌率測試(Agar extraction process)………………………….26 3-3-8 3T3 Fibroblast cell培養步驟…………………………………………….27 3.3.8.1冷凍細胞活化……………………………………………………..27 3.3.8.2細胞繼代培養……………………………………………………..27 3.3.8.3細胞繼數…………………………………………………………..28 3.3.8.4細胞冷凍保存……………………………………………………..28 3.3.9 Raw 264.7 Macrophage cell………………………………………………29 3.3.9.1冷凍細胞活化……………………………………………………..29 3.3.9.2細胞繼代培養……………………………………………………..29 3.3.9.3細胞繼數…………………………………………………………..30 3.3.9.4細胞冷凍保存……………………………………………………..30 3.3.10電紡薄膜孔隙率分析方法……………………………………………...31 3.3.11電紡薄膜細胞毒性測試(Cytotoxicity test of Fibroblast cells)…………32 3.3.12電紡薄膜細胞抗發炎測試(LPS-induced macrophage model)…………33 3.3.13含奈米銀粒子電紡薄膜的銀離子釋放測試(Silver-ion release measurement)………………………………………………………...………………34 3.3.14電紡薄膜透氣性測試(Moisture vapour transmission rate measurement)34 3.3.15電紡薄膜吸水性測試(Water absorbency measurement)……………….34 3.3.16電紡薄膜於創傷模式小鼠動物評估…………………………………...35 3.3.16.1非感染小鼠動物實驗……………………………………………35 3.3.16.1.1敷料製備……………………………………………………….35 3.3.16.1.2創傷手術與傷口影像紀錄…………………………………….36 3.3.16.1.3傷口包紮……………………………………………………….36 3.3.16.1.4傷口紀錄影像面積估算與軟體使用………………………….37 3.3.17.2感染小鼠動物實驗………………………………………………38 3.3.17.2.1金黃色葡萄球菌接種………………………………………….38 3.3.17.2.2傷口清創手術………………………………………………….38 3.3.18實驗統計分析………………………………………………...…………38 第四章、實驗結果與討論 4.1奈米銀粒子特性測試……………………………………………………………39 4.1.1利用分光光度計分析奈米銀粒子的表面電漿共振吸收光譜(Surface Plasmon Resonance) 4.1.2利用FE-SEM分析奈米銀粒子表面型態與粒徑 4.1.3奈米銀粒子對於金黃色葡萄球菌的抑菌圈分析 4.2電紡薄膜的最佳條件……………………………………………………………40 4.2.1 10 wt% PU電紡薄膜最佳條件 4.2.2 FE-SEM分析PU12、PU13、PU14與PU15的電紡薄膜表面型態與DiameterJ分析 4.2.3 加入奈米銀粒子的最佳共溶劑條件 4.2.4 FE-SEM分析含銀奈米粒子電紡薄膜表面型態與DiameterJ分析 4.3利用TEM分析電紡薄膜內部結構……………………………………….…….42 4.4 利用FT-IR分析電紡薄膜表面化學組成………………………………………42 4.5利用XPS分析電紡薄膜表面化學組成…………………………………………42 4.6含奈米銀粒子電紡薄膜對於金黃色葡萄球菌抑菌圈分析……………………43 4.7含奈米銀粒子電紡薄膜抑菌測試結果(Agar extraction process)………………43 4.8含奈米銀粒子電紡薄膜的銀離子釋放曲線(Silver-ion release profile)………..43 4.9含奈米銀粒子電紡薄膜對於細胞毒性測試結果(Cytotoxicity test of fibroblast cells)……………………………………………………………………………………….44 4.10含奈米銀粒子電紡薄膜對於細胞抗發炎測試結果(LPS-induced macrophage model)……………………………………………………………………………………..44 4.11含奈米銀粒子電紡薄膜對於透氣性測試結果(Moisture vapour transmission rate measurement)…………………………………………………………………………44 4.12含奈米銀粒子電紡薄膜對於吸水性測試結果(Water absorbency measurement)………………………………………………………….…………………..45 4.13含奈米銀粒子電紡薄膜對於非感染創傷模式小鼠動物實驗………………..45 4.14非感染創傷模式小鼠的病理切片分析………………………………………..46 4.15含奈米銀粒子電紡薄膜對於感染創傷模式小鼠動物實驗…………………..46 4.16感染創傷模式小鼠的病理切片分析…………………………………………..47 第五章、結論………………………………………………………………………..48 第六章、參考文獻…………………………………………………………………..50

1. 謝哲松, 微生物生物學. 1996, 台灣: 國立編譯館. 804-805.
2. Andrew, W., Nanotechnology: An Introduction. 2016.
3. Mark A. Ratner, D.R., Nanotechnology: A Gentle Introduction to the Next Big Idea. 2003.
4. Meeting, A.C.S., Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. 2008.
5. Cooper, S.L. and J. Guan, Advances in polyurethane biomaterials. 2016: Duxford : Woodhead Publishing, c2016.
6. 于博芮, 最新傷口護理學第二版. 2012: 華杏出版股份有限公司. 22-46.
7. Boundless, Structure of the Skin: Dermis.
8. Klosterman, L., Skin. 2008: Marshall Cavendish Benchmark.
9. Tejiram, S., et al., 1 - Wound healing A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 3-39.
10. Pratsinis, H. and D. Kletsas, 2 - Growth factors in fetal and adult wound healing A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 41-68.
11. Hinz, B., 3 - Targeting the myofibroblast to improve wound healing A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 69-100.
12. Azzimonti, B., et al., 4 - Manipulating the healing response A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 101-116.
13. Urao, N. and T.J. Koh, 5 - Manipulating inflammation to improve healing A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 117-150.
14. Martin, Y.H., F.V. Lali, and A.D. Metcalfe, 6 - Modelling wound healing A2 - Ågren, Magnus S, in Wound Healing Biomaterials. 2016, Woodhead Publishing. p. 151-173.
15. 游朝慶, 濕潤傷口癒合觀念及傷口床準備觀念. 2010.
16. 游朝慶. Aquael-Ag+ Extra的進化史. 2015.
17. 游朝慶, 抗菌敷料主要競爭廠商之專利分析, in 商管專業學院. 2009, 國立雲林科技大學: 雲林縣. p. 124.
18. 杜成偉. 淺談高分子奈米纖維製作技術與其應用. 2013.
19. 林育賢, 以靜電紡絲法製作聚氨基甲酸酯/氧化鋅纖維薄膜, in 高分子系. 2010, 國立臺灣科技大學: 台北市. p. 121.
20. 陳柏宏, 利用聚氨酯薄膜成長銀做為抗菌敷料之應用, in 化學工程與材料工程系. 2014, 國立雲林科技大學: 雲林縣. p. 60.
21. 鄧一安. 非針式靜電紡絲製程及其奈米纖維薄膜之應用. 2012.
22. Ramakrishna, S., An Introduction to Electrospinning and Nanofibers. 2005: World Scientific.
23. 李賢學, 化學還原法製備奈米銀及其應用, in 化學工程學系. 2005, 國立清華大學: 新竹市. p. 157.
24. Sun, Y. and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. SCIENCE, 2002. 298: p. 2176-2179.
25. 伍安義, 以化學還原法合成奈米銀-銅粒子及其特性分析研究, in 化學工程學系. 2006, 國立清華大學: 新竹市. p. 67.
26. Carotenuto, G., G.P.Pepe, and L. Nicolais, Preparation and characterization of nano-sized Ag/PVP composites for optical applications. The European Physical Journal B, 2000.
27. Luo, C., et al., The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci, 2005. 288(2): p. 444-8.
28. Sun, Y. and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. SCIENCE, 2002. 298.
29. Carotenuto, G., Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic Chemistry, 2001. 15(5): p. 344-351.
30. Dibrov, P., et al., Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 2002. 46(8): p. 2668-2670.
31. Holt, K.B. and A.J. Bard, Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry, 2005. 44(39): p. 13214-13223.
32. Li, Y., et al., Synthesis of silver nanoparticles by electron irradiation of silver acetate. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2006. 251(2): p. 425-428.
33. Zodrow, K., et al., Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009. 43(3): p. 715-723.
34. Nel, A., et al., Toxic potential of materials at the nanolevel. Science, 2006. 311(5761): p. 622-627.
35. Mendis, E., et al., Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 2005. 77(17): p. 2166-2178.
36. Choi, O., et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 2008. 42(12): p. 3066-3074.
37. Raffi, M., et al., Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science & Technology, 2008. 24(2): p. 192-196.
38. Guelcher, S.A., Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev, 2008. 14(1): p. 3-17.
39. William Murphy, J.B., Garth Hastings, Handbook of Biomaterial Properties. 2016.
40. Szycher, M., High Performance Biomaterials: A Complete Guide to Medical and Pharmceutical Applications. 1991.
41. Macossay, J., et al., Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex (R) EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes. Applied Surface Science, 2014. 321: p. 205-213.
42. 閻啟泰, et al., 實用微生物及免疫學. 2011, 台灣: 華杏出版股份有限公司.
43. Tijing, L.D., et al., Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by electrospinning and UV photoreduction. Current Applied Physics, 2013. 13(1): p. 205-210.
44. Shamshi Hassan, M., et al., Bimetallic Zn/Ag doped polyurethane spider net composite nanofibers: A novel multipurpose electrospun mat. Ceramics International, 2013. 39(3): p. 2503-2510.
45. Sumitha, M.S., et al., Biocompatible and Antibacterial Nanofibrous Poly(ϵ-caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science, Part A, 2012. 49(2): p. 131-138.
46. Sheikh, F.A., et al., <Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications.pdf>. Macromolecular Research, 2009. 17: p. 688-696.
47. Pelíšková, M., et al., Electrospun polyurethane membrane with Ag/ZnO microparticles as an antibacterial surface on polyurethane sheets. Journal of Applied Polymer Science, 2016. 133(10): p. n/a-n/a.
48. Nirmala, R., et al., Enhanced electrical properties of electrospun nylon66 nanofibers containing carbon nanotube fillers and Ag nanoparticles. Fibers and Polymers, 2014. 15(5): p. 918-923.
49. Pham, T.-D. and B.-K. Lee, Novel integrated approach of adsorption and photo-oxidation using Ag–TiO2/PU for bioaerosol removal under visible light. Chemical Engineering Journal, 2015. 275: p. 357-365.
50. Tijing, L.D., et al., One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) – Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Materials Chemistry and Physics, 2012. 134(2-3): p. 557-561.
51. Cho, J.W. and J.H. So, Polyurethane–silver fibers prepared by infiltration and reduction of silver nitrate. Materials Letters, 2006. 60(21-22): p. 2653-2656.
52. Qu, R., et al., Preparation and property of polyurethane/nanosilver complex fibers. Applied Surface Science, 2014. 294: p. 81-88.
53. Dubey, P., et al., Silver-nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. Journal of Applied Polymer Science, 2015. 132(35): p. n/a-n/a.
54. Kim, J.H., et al., Electrospun badger (Meles meles) oil/Ag nanoparticle based anti-bacterial mats for biomedical applications. Journal of Industrial and Engineering Chemistry, 2015. 30: p. 254-260.
55. Zhuo, H., et al., Preparation of polyurethane nanofibers by electrospinning. Journal of Applied Polymer Science, 2008. 109(1): p. 406-411.
56. Demir, M.M., et al., Electronspunning of fibers. Polymer, 2002. 43: p. 3303-3309.
57. Karakaş, H., et al., Polyurethane Nanofibers Obtained By Electrospinning Process. World Academy of Science, Engineering and Technology, 2013. 7.
58. Hotaling, N.A., et al., DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials, 2015. 61: p. 327-38.
59. 抑制NO生成試驗.
60. Bai, M.Y., et al., The effect of active ingredient-containing chitosan/polycaprolactone nonwoven mat on wound healing: in vitro and in vivo studies. J Biomed Mater Res A, 2014. 102(7): p. 2324-33.
61. 邱國斌 and 蔡定平. 金屬表面電漿簡介. 2006.
62. 陳致融 and 劉如熹. 把太陽光轉成化學能:利用奈米金屬提高水分解產氫效率. 2015.
63. Cho, K.-H., et al., The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005. 51(5): p. 956-960.
64. Shahverdi, A.R., et al., Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 2007. 3(2): p. 168-71.
65. 吳紹祺. 微生物導論.
66. Dai, S. Polyurethanes with high polar urea-hardsegment of over 30wt% will be hard to dissolve once they form interchain hydrigen-bondings. 2015.
67. Novák, I., I. Krupa, and I. Chodák, Electroconductive adhesives based on epoxy and polyurethane resins filled with silver-coated inorganic fillers. Synthetic Metals, 2004. 144(1): p. 13-19.
68. Wattanodorn, Y., et al., Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polymer Testing, 2014. 40: p. 163-169.
69. Lu, P., et al., Degradation of polyurethane coating materials from liquefied wheat straw for controlled release fertilizers. Journal of Applied Polymer Science, 2016. 133(41).
70. Mishra, A.K., et al., FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings, 2006. 55(3): p. 231-243.
71. Serghini-Monim, S., et al., Adsorption of a Silver Chemical Vapor Deposition Precursor on Polyurethane and Reduction of the Adsorbate to Silver Using Formaldehyde. American Chemical Society, 1998.
72. Cocca, M. and L. D'Orazio, Novel silver/polyurethane nanocomposite byin situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. Journal of Polymer Science Part B: Polymer Physics, 2008. 46(4): p. 344-350.
73. Sheikh, F.A., et al., Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications. Macromolecular Research, 2009. 17: p. 688-696.
74. Marambio-Jones, C. and E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010. 12(5): p. 1531-1551.
75. Martinez-Gutierrez, F., et al., Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine, 2012. 8(3): p. 328-36.
76. Carlson, C., et al., Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. American Chemical Society, 2007.
77. Tian, J., et al., Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007. 2(1): p. 129-36.
78. Mandal, A. and D. Chakrabarty, Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films. Carbohydr Polym, 2015. 134: p. 240-50.
79. Singh, D. and R. Singh, Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation. Radiation Physics and Chemistry, 2012. 81(11): p. 1781-1785.
80. Woo, H.-D., et al., Preparation of UV-curable gelatin derivatives for drug immobilization on polyurethane foam: Development of wound dressing foam. Macromolecular Research, 2015. 23(11): p. 994-1003.
81. Zehrer, C.L., et al., A comparison of the in vitro moisture vapour transmission rate and in vivo fluid-handling capacity of six adhesive foam dressings to a newly reformulated adhesive foam dressing. Int Wound J, 2014. 11(6): p. 681-90.
82. Chellamani, K.P., et al., Wound Healing Ability of Herbal Drug Incorporated PCL (Poly(ε-caprolactone)) Wound Dressing. Journal of Academia and Industrial Research, 2014. 2.
83. Samberg, M.E., S.J. Oldenburg, and N.A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect, 2010. 118(3): p. 407-13.
84. Wong, K.K., et al., Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem, 2009. 4(7): p. 1129-35.
85. AshaRani, P.V., et al., Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACASNANO, 2009.
86. Sadauskas, E., et al., Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine, 2009. 5(2): p. 162-9.
87. Ahamed, M., M.S. Alsalhi, and M.K. Siddiqui, Silver nanoparticle applications and human health. Clin Chim Acta, 2010. 411(23-24): p. 1841-8.

無法下載圖示 全文公開日期 2022/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE