簡易檢索 / 詳目顯示

研究生: Aashir Azhar
Aashir Azhar
論文名稱: 評估氣相式二氧化矽作為 TPUs sc-CO2 物理發泡成核劑之可能性
Assessment of fumed silica as a nucleating agent for sc-CO2 physical foaming of TPUs
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: Tzu-Jen Lin
Tzu-Jen Lin
Chien-Chia Chu
Chien-Chia Chu
Shu-Kai Yeh
Shu-Kai Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 103
中文關鍵詞: 熱塑性聚氨酯奈米二氧化矽批次發泡CO2流變學差示掃描量熱法 (DSC)
外文關鍵詞: Thermoplastic polyurethane, Fumed silica, Batch foaming, CO2, Rheology, Differential scanning calorimetry (DSC)
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾十年來,研究人員一直在研究使用無機顆粒來提高高分子泡材的泡孔密度。傳統上,研究人員使用成核劑來增強和控制氣泡成核。 在本研究中,我們使用兩種未經和經表面處理的氣相二氧化矽顆粒AEROSIL® 200 (A200) 和 AEROSIL® R974 (R974),作為TPU的 發泡成核劑,並使用超臨界 CO2 作為發泡劑。
    結果顯示,氣相二氧化矽是一種良好的泡孔成核劑。 與純 TPU 泡材相比,添加 1 wt% 的氣相二氧化矽可使泡孔密度增加約兩個數量級,並且平均泡孔尺寸減小。 添加氣相二氧化矽不改變結晶溫度(Tc); 熔化熱 (ΔHm) 僅略有下降。 另外,添加氣相二氧化矽作為成核劑也不會顯著改變黏度,這些特性對高分子加工非常有利。


    For decades, researchers have investigated the use of inorganic particles to enhance the cell density of polymeric foams. Traditionally, researchers use a nucleating agent to enhance and control cell nucleation. In this study, two fumed silica particles were applied as nucleating agents in MDI/BD/PTMEG-based TPUs for foaming, and supercritical CO2 was used as the blowing agent. Two fumed silica particles, AEROSIL® 200 (A200) and AEROSIL® R974 (R974), without and with surface treatment, are mixed with four different TPUs grades with different hardness.
    The results showed that fumed silicas are cell nucleating agents. The adding 1 wt% fumed silica increased the cell density by about two orders of magnitude, and the average cell size decreased compared to neat TPUs foam. Adding fumed silica did not change the crystallization temperature (Tc); the fusion heat (ΔHm) only slightly decreased. Adding fumed silica as a nucleation agent did not significantly alter viscosity, which is ideal for polymer processing.

    TITLE PAGE 1 摘要 III ABSTRACT IV ACKNOWLEDGMENT V TABLE OF CONTENTS VII LIST OF FIGURES IX LIST OF TABLES XIII LIST OF ABBREVIATIONS AND SYMBOLS XIV CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 Thermoplastic Polyurethane 4 2.1.1 Microstructure and Synthesis of TPUs 5 2.1.2 Superior physical properties and current application 10 2.2 Foaming of TPEs 11 2.2.1 Blowing agent 13 2.2.2 Batch foaming 14 2.3 Nucleation agent 16 2.4 Nanosilica particles 17 CHAPTER 3 EXPERIMENTAL METHOD 23 3.1 Materials 23 3.2 Apparatus 25 3.3 Experimental procedure flow chart 27 3.4 Experiments and Analyses 27 3.4.1 Compounding 27 3.4.2 Thermal Analysis 28 3.4.3 Rheological Analysis 29 3.4.4 Foaming (One-Step batch foaming) 29 3.4.5 Measurement of foam density, expansion ratio, and shrinkage ratio 30 3.4.6 Foam structure analysis 31 CHAPTER 4 RESULTS AND DISCUSSION 33 4.1 Effect of Extrusion on the physical properties of TPU 33 4.2 Nucleation agent dispersion 34 4.3 Thermal Properties Analysis 35 4.3.1 DSC thermal analysis 35 4.3.2 TMA analysis 40 4.3.3 Rheological Properties 42 4.4 Foam cell structure analysis 46 4.4.1 Effect of compounding on TPU foaming 46 4.4.2 Effect of adding fumed silica grade A200 and R974 additives in TPUs 52 4.5 Effect on foam shrinkage by adding fumed silica particles additive in TPUs 64 CHAPTER 5 CONCLUSION 67 REFERENCES 69 APPENDIX 78

    1. https://www.reportlinker.com/p06345241/Global-Elastomeric-Foams-Industry.html
    2. J. G. Drobny, Handbook of Thermoplastic Elastomers, Second Edition, PDL Handbook Series. 2014, Amsterdam: Elsevier.
    3. S. T Lee and C. B. Park, Foam Extrusion: Principles and Practice, Second Edition (2nd ed.). CRC Press, 2014
    4. N. R. Legge, G. Holden, and J. H. Schroeder, Thermoplastic elastomers: A comprehensive review, Hanser Publishers, 1987.
    5. S. Amin and M. Amin, Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation, Reviews on Advanced Materials Science, 2011. 29: p 15-30
    6. L. Wang, WHAT'S THAT STUFF? POLYURETHANE FOAM From furniture cushions to insulation, versatile polymer has found a world of applications. Chemical & Engineering News, 2006. 84(2): p 48.
    7. Javni, O. Bilić, N. Bilić, Z. S. Petrović, E. A. Eastwood, F. Zhang, and J. Ilavský, Thermoplastic polyurethanes with isosorbide chain extender. journal of Applied Polymer Science 2015. 132(47), 42830
    8. L. Tatai, T. G. Moore, R. Adhikari, F. Malherbe, R. Jayasekara, I. Griffiths, and P. A. Gunatillake, Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials, 2007. 28(36): p. 5407-5417.
    9. C. D. Han, Rheology of Thermoplastic Polyurethanes, in Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. 2007, Oxford: Oxford University Press.
    10. I. Yilgör, E. Yilgör, and G. L. Wilkes, Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review, Polymer, 2015. 58: p. A1-A36.
    11. S. Fakirov, Handbook of condensation thermoplastic elastomers. 2005, Weinheim: Wiley-VCH.
    12. C. Prisacariu, Polyurethane elastomers from morphology to mechanical aspects, 2011, New York: Springer, p. 255.
    13. E. Głowińska, W. Wolak, J Dutta, Eco-friendly route for thermoplastic polyurethane elastomers with bio-based hard segments composed of bio-glycol and mixtures of aromatic–aliphatic and aliphatic–aliphatic diisocyanate, Journal of polymer and the environment, 2021. 29(7): p. 2140-2149.
    14. D. C. Allport, D. S. Gilbert, and S. Outterside, MDI and TDI: safety, health and the environment: a source book and practical guide, New York: Wiley, 2003.
    15. M. Sáenz-Pérez, E. Lizundia, J. M. Laza, J. García-Barrasa, J. L. Vilas, and L. M. León, Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances. 2016. 6(73): p. 69094-69102.
    16. T. Schupp, P. M. Plehiers, and I. Health, Absorption, distribution, metabolism, and excretion of methylene diphenyl diisocyanate and toluene diisocyanate: Many similarities and few differences, Toxicology and Industrial Health 38(9) 2022: p. 500 – 528.
    17. C. Bevas, The Influence of Process Chemistry on Heat Exchanger Fouling in Isocyanate Production, Ph.D. Thesis, University of Surrey, UK, 2021.
    18. H. Kothandaraman, K. Venkatarao, and B. C. Thanoo, Polyether–ester-based polyurethane systems, Journal of Applied Polymer Science, 1990. 39(4): p. 943-954.
    19. C.-S. Wang and D. J. Kenney, Effect of Hard Segments on Morphology and Properties of Thermoplastic Polyurethanes, Journal of Elastomers and Plastics, 1995. 27(2): p. 182-199.
    20. L. Jiang, J. Wu, C. Nedolisa, A. Saiani, and H. E. Assender, Phase Separation and Crystallization in High Hard Block Content Polyurethane Thin Films, Macromolecules, 2015. 48(15): p. 5358-5366.
    21. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties, Macromolecules, 1992. 25(23): p. 6195-6204.
    22. N. M. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in biomedical applications, Boca Raton: CRC Press, 1998.
    23. G. Woods, The ICI polyurethanes book. Second Edition, New York: Wiley, 1987
    24. B. Fernández d'Arlas, L. Rueda, K. de la Caba, I. Mondragon, and A. Eceiza, Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI, Polymer Engineering and Science, 2008. 48(3): p. 519-529.
    25. I. Yilgor and E. Yilgor, Structure‐morphology‐property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders, Polymer Reviews, 2007. 47(4): p. 487-510.
    26. E. Yildirim and M. Yurtsever, The role of diisocyanate and soft segment on the intersegmental interactions in urethane and urea based segmented copolymers: A DFT study, Computational and Theoretical Chemistry, 2014. 1035: p. 28-38
    27. H. J. Qi and M. C. Boyce, Stress–strain behavior of thermoplastic polyurethanes, Mechanics of Materials, 2005. 37(8): p. 817-839.
    28. Y. He, D. Xie, and X. Zhang, The structure, microphase-separated morphology, and property of polyurethanes and polyureas, Journal of Materials Science, 2014. 49(21): p. 7339-7352.
    29. M. Landa, J. Canales, M. Fernández, M. E. Muñoz, and A. Santamaría, Effect of MWCNTs and graphene on the crystallization of polyurethane based nanocomposites,
    analyzed via calorimetry, rheology and AFM microscopy. Polymer Testing, 2014. 35: p. 101-108.
    30. T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering and Science, 1980. 20(3): p. 190-197.
    31. W. Zhai, J. Jiang, and C. B. Park, A review on physical foaming of thermoplastic and vulcanized elastomers. Polymer Reviews, 2022. 62(1): p. 95-141.
    32. Y. Zhang, Y. Zhang, Y. Li, and X. Wang, A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites, Applied Surface Science, 2016. 382: p. 144-154.
    33. P. Jacquot, D. Perrin, and P. Lenny, Impact on peel strength, tensile strength and shear viscosity of the addition of functionalized low density polyethylene to a thermoplastic polyurethane sheet calendered on a polyester fabric, Journal of Industrial Textiles, 2018. 48(5): p. 848-874.
    34. Q. Geo, Y. Pan, G. Zheng, C. Liu, C. Shen and X. Liu, Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances, Advanced Composites and Hybrid Materials, 2021. 4(2): p. 274-285.
    35. J. Jiang, H. Zheng, H. Liu, and W. Zhai, Tunable cell structure and mechanism in porous thermoplastic polyurethane micro-film fabricated by a diffusion-restricted physical foaming process, Journal of supercritical fluids, 2021. 171: p. 105205.
    36. M. H. van Schalkwyk and P. J. Gräbe, Condition monitoring of train wheels using a cost-effective smart rail pad, Engineering Research Express, 2022. 4(3): p. 035045.
    37. F. Prissok and F. Braun, Foams based on thermoplastic polyurethanes, US11332594B2.
    38. D. Raps, N. Hossieny, C. B. Park, and V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology, Polymer, 2015. 56: p. 5-19.
    39. C. Ge, Q. Ren, S. Wang, W. Zheng, W. Zhai, and C. B. Park, Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties, Chemical Engineering Science, 2017. 174: p. 337-346.
    40. R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, and Y. Liu, Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending, Polymer Testing, 2017. 63: p. 38-46.
    41. M. R. Barzegari, N. Hossieny, D. Jahani, and C. B. Park, Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams, Polymer (United Kingdom), 2017. 114: p. 15-27.
    42. T. Köppl, D. Raps, and V. Altstädt, E-PBT - Bead foaming of poly(butylene terephthalate) by underwater pelletizing. Journal of Cellular Plastics, 2014. 50(5): p. 475-487.
    43. A. Shabani, A. Fathi, S. Erlwein, and V. Altstadt, Thermoplastic polyurethane foams: From autoclave batch foaming to bead foam extrusion, Journal of Cellular Plastics, 2021. 57(4): p. 391-411.
    44. T. Standau, B. Hädelt, P. Schreier, and V. Altstädt, Development of a Bead Foam from an Engineering Polymer with Addition of Chain Extender: Expanded Polybutylene Terephthalate, Industrial & Engineering Chemistry Research, 2018. 57(50): p. 17170-17176.
    45. X. Jiang, L. Zhao, L. Feng, and C. Chen, Microcellular thermoplastic polyurethanes and their flexible properties prepared by mold foaming process with supercritical CO2, Journal of Cellular Plastics, 2019. 55(6): p. 615-631.
    46. G. Wang, G. Zhao, G. Dong, Y. Mu, C. B. Park, and G. Wang, Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening, European Polymer Journal, 2018. 103: p. 68-79.
    47. Z. Xu, X. Jiang, T. Liu, G. Hu, L. Zhao, Z. Zhu, and W. Yuan, Foaming of polypropylene with supercritical carbon dioxide, Journal of supercritical fluids, 2007. 41(2): p. 299-310.
    48. C. Yang, K. L. Lee, and S. T. Lee, Dimensional Stability of LDPE Foams: Modeling and Experiments, Journal of Cellular Plastics, 2002. 38(2): p. 113-128.
    49. W. Wang, X. Liao, Y. He, J. Li, Q. Jiang, and G. Li, Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide, Journal of supercritical fluids, 2020. 163: p. 104861.
    50. S. N. Leung, C. B. Park, and H. Li, Effects of nucleating agents shapes and interfacial properties on cell nucleation. Journal of Cellular Plastics, 2010. 46(5): p. 441-460.
    51. S.-T. Lee, Polymeric Foams: Innovations in Processes, Technologies, and Products, Roca Baton: CRC Press, 2016
    52. G. Coste, C. Negrell, and S. Caillol, From gas release to foam synthesis, the second breath of blowing agents, European Polymer Journal, 2020. 140: p. 110029.
    53. J. Sarver and E. Kiran, Foaming of Polymers with Carbon Dioxide – The year-in-review – 2019, Journal of supercritical fluids, 2021. 173: p. 105166.
    54. K. Okamoto, Microcellular Processing, Munich: Hanser Gardner Publications, 2003.
    55. R. Jiang, Y. Chen, S. Yao, T. Liu, Z. Xu, C. B. Park, and L. Zhao, Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction, Polymer, 2019. 179.
    56. R. Jiang, S. Yao, Y. Chen, T. Liu, Z. Xu, C. B. Park, and L. Zhao, Effect of chain topological structure on the crystallization, rheological behavior and foamability of TPEE using supercritical CO2 as a blowing agent, Journal of Supercritical Fluids, 2019. 147: p. 48-58.
    57. Z. X. Zhang, X. R. Dai, L. Zou, S. B. Wen, T. K. Sinha, and H. Li, A developed, eco-friendly, and flexible thermoplastic elastomeric foam from SEBS for footwear application, Express Polymer Letters, 2019. 13(11): p. 948-958.
    58. W. Zhai, S. N. Leung, L. Wang, H. E. Naguib, and C. B. Park, Preparation of microcellular poly(ethylene-co-octene) rubber foam with supercritical carbon dioxide, Journal of Applied Polymer Science, 2010. 116(4): p. 1994-2004.
    59. S. P. Nalawade, F. Picchioni, and L. P. B. M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Progress in Polymer Science, 2006. 31(1): p. 19-43
    60. T. Standau, C. Zhao, S. Murillo Castellon, C. Bonten, and V. Altstadt, Chemical Modification and Foam Processing of Polylactide (PLA), Polymers (Basel), 2019. 11(2).
    61. S. Costeux, CO2-blown nanocellular foams, Journal of Applied Polymer Science, 2014. 131(23):41293
    62. R. B. McClurg, Design criteria for ideal foam nucleating agents, Chemical Engineering Science, 2004. 59(24): p. 5779-5786.
    63. S. N. Leung, A. Wong, L. C. Wang, and C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents, Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    64. A. Wong, H. Guo, V. Kumar, C. B. Park, and N. P. Suh, Microcellular Plastics. Encyclopedia of Polymer Science and Technology, 2016: p. 1-57.
    65. L. Sun, W. J. Boo, H.-J. Sue, and A. Clearfield, Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios, New Journal of Chemistry, 2007. 31(1): p. 39-43.
    66. N. H. Fletcher, Size Effect in Heterogeneous Nucleation, The Journal of Chemical Physics, 1958. 29(3): p. 572-576.
    67. M. Alhawat, A. Ashour, and A. El-Khoja, Properties of concrete incorporating different nano silica particles, Materials Research Innovations, 2020. 24(3): p. 133-144.
    68. S. Etienne, C. Becker, D. Ruch, B. Grignard, G. Cartigny, C. Detrembleur, C. Calberg, and R. Jerome, Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA, Journal of Thermal Analysis and Calorimetry, 2007. 87(1): p. 101-104.
    69. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, and S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(2): p. 313-327.
    70. F. Liebau, Structural chemistry of silicates: structure, bonding, and classification, Berlin, Heidelberg: Springer, 1985.
    71. K. Neeraj and M. Chandra, Basics of Clay Minerals and Their Characteristic Properties, in Clay and Clay Minerals, Edited by Gustavo Morari Do Nascimento. 2021, IntechOpen
    72. Evonik, "Aerosil Fumed Silica Technical Overview", https://www.l-i.co.uk/contentfiles/270.pdf, accessed on 2023/02/12
    73. R. Salh, Defect related luminescence in silicon dioxide network: a review in Crystalline Silicon - Properties and Uses edited by S. Basu, 2011: p. 135-172.
    74. S. W. Ha, M. N. Weitzmann, and G. R. Beck Jr, Dental and skeletal applications of silica-based nanomaterials, in Nanobiomaterials in Clinical Dentistry Edited by: Karthikeyan Subramani and Waqar Ahmed, 2013, Amsterdam: Elsevier. p. 69-91.
    75. R. Willis and A. Benin, Toward commercialization of nanozeolites, in From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference Proceedings of the 15th International Zeolite Conference, Edited by Ruren Xu, Zi Gao, Jiesheng Chen, Wenfu Yan, Studies in Surface Science and Catalysis Book series, 170: p. 242-249.
    76. H. Barthel, L. Rösch, and J. Weis, Chapter 91 - Fumed Silica - Production, Properties, and Applications, in Organosilicon Chemistry Set: From Molecules to Materials. edited by Norbert Auner and Johann Weis 2005. https://doi.org/10.1002/9783527620777.ch91a
    77. F. Akhter, D. S. A. Soomro, A. R. Jamali, and V. J. Inglezakis, Structural, Morphological and Physiochemical Analysis of SiC8H20O4/C2H5O/C7H16 Modified Mesoporous Silica Aerogels, Physical Chemistry Research. 2023. 11(1): p. 1-8.
    78. H. Cheng Liu, J. Xi Wang, Y. Mao, and R. San Chen, The preparation and growth of colloidal particles of concentrated silica sols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993. 74(1): p. 7-13.
    79. P. Singh, S. Srivastava, and S. K. Singh, Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications, ACS Biomaterials Science and Engineering, 2019. 5(10): p. 4882-4898.
    80. W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 1968. 26(1): p. 62-69.
    81. Y. Piao, A. Burns, J. Kim, U. Wiesner, and T. Hyeon, Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications, Advanced Functional materials, 2008. 18(23): p. 3745-3758.
    82. B. L. Cushing, V. L. Kolesnichenko, and C. J. O'connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, 2004. 104(9): p. 3893-3946.
    83. S. Rezaei, I. Manoucheri, R. Moradian, and B. Pourabbas, One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication, Chemical Engineering Journal, 2014. 252: p. 11-16.
    84. W. Y. Teoh, R. Amal, and L. Mädler, Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale. 2010. 2(8): p. 1324-1347.
    85. H. D. Klopfer, “Process for cleaning finely divided oxides from metals or metalloids” DE 762723, 1942
    86. D. Bikiaris and A. Vasileiou, Fumed Silica Reinforced Nanocomposites in Nanocomposite Coatings and Nanocomposite Materials edited A. Öchsner, W. Ahmed, N. Ali, Wollerau:Trans Tech Publications Ltd 2009. p. 127-194.
    87. H. Jacobsen and P. Kleinschmit, Flame Hydrolysis in Preparation of Solid Catalysts edited by G. Ertl, H. Knözinger, and J. Weitkamp, 1999, New York: Wiley-VCH, p. 99-109.
    88. K. Cho, H. Chang, D. S. Kil, J. Park, H. D. Jang, H. Y. Sohn, Mechanisms of the formation of silica particles from precursors with different volatilities by flame spray pyrolysis. Aerosol science and technology, 2009. 43(9): p. 911-920.
    89. https://en.wikipedia.org/wiki/Fumed_silica#/media/File:Fumed_silica_process.svg [Accessed 17 January 2023].
    90. G. Wang, G. Fu, T. Gao, H. Kuang, R. Wang, F. Yang, W. Jiao, L. Hao, and W. Liu, Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome, International Journal of Adhesion and Adhesives, 2016. 68: p. 80-86.
    91. J. Zhang, S. Hu, G. Zhan, X. Tang, and Y. Yu, Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin, Progress in Organic Coatings, 2013. 76(11): p. 1683-1690.
    92. B. Arkles, Hydrophobicity, Hydrophilicity and Silanes, Paint and Coatings Industry, Oct. 2006: p. 114 - 135.
    93. M. Nofar, E. Büşra Küçük, and B. Batı, Effect of hard segment content on the microcellular foaming behavior of TPU using supercritical CO2, Journal of supercritical fluids, 2019. 153: 104590.
    94. J. Jiang, F. Liu, X. Yang, Z. Xiong, H. Liu, D. Xu, and W. Zhai, Evolution of ordered structure of TPU in high-elastic state and their influences on the autoclave foaming of TPU and inter-bead bonding of expanded TPU beads. Polymer, 2021. 228: 123872.
    95. C. Zhao and Y. Qiao, Characterization of nanoporous structures: From three dimensions to two dimensions. Nanoscale, 2016. 8(40): p. 17658-17664.
    96. V. Kumar and N. P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 30(20): p. 1323-1329.
    97. S. K. Yeh, R. Rangappa, T. H. Hsu, and S. Utomo, Effect of extrusion on the foaming behavior of thermoplastic polyurethane with different hard segments. Journal of Polymer Research, 2021. 28(7): 244.
    98. N. J. Hossieny, M. R. Barzegari, M. Nofar, S. H. Mahmood, and C. B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams, Polymer, 2014. 55(2): p. 651-662.
    99. A. Tabatabaei and C. B. Park, In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion, European Polymer Journal, 2017. 96: p. 505-519.
    100. M. Nofar and C. B. Park, Poly (lactic acid) foaming, Progress in Polymer Science, 2014. 39(10): p. 1721-1741.
    101. J. Vega-Baudrit, M. Sibaja-Ballestero, P. Vázquez, R. Torregrosa-Maciá, and J. Miguel Martín-Martínez, Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content, International Journal of Adhesion and Adhesives, 2007. 27(6): p. 469-479.
    102. T. A. Osswald, Understanding polymer processing: processes and governing equations, Cincinnati: Hanser, 2017.
    103. M. Oikawa, K Nishijima, N. Koshita, and H. Tatsuya, Thermoplastic polyurethane foamed particles and method for manufacturing thermoplastic polyurethane foamed particle molded article, 2019.
    104. TA Instruments, " Thermal Machanical Analysis Q400/Q400EM", product brochure Available at https://www.tainstruments.com/wp-content/uploads/TMA.pdf [Accessed 2023/02/12].
    105. P. J. Yoon and C. D. Han, Effect of thermal history on the rheological behavior of thermoplastic polyurethanes. Macromolecules, 2000. 33(6): p. 2171-2183.
    106. K. Taki, Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chemical Engineering Science, 2008. 63(14): p. 3643-3653.
    107. S. N. Leung, C. B. Park, D. Xu, H. Li, and R. G. Fenton, Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006. 45(23): p. 7823-7831.
    108. S. Kurzbeck, F. Oster, H. Münstedt, T. Q. Nguyen, and R. Gensler, Rheological properties of two polypropylenes with different molecular structure, Journal of Rheology, 1999. 43(2): p. 359-374.
    109. H. X. Huang and J. K. Wang, Improving polypropylene microcellular foaming through blending and the addition of nano‐calcium carbonate, Journal of Applied Polymer Science, 2007. 106: p. 505-513.
    110. A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, Current issues and challenges in polypropylene foaming: a review. Cellular Polymers, 2015. 34(6): p. 299-338.
    111. S. Hassanajili and M. T. Sajedi, Fumed silica/polyurethane nanocomposites: effect of silica concentration and its surface modification on rheology and mechanical properties, Iranian Polymer Journal, 2016. 25(8): p. 697-710
    112. J. Wang, Y. Guo, W. Yu, C. Zhou, and P. Steeman, Linear and nonlinear viscoelasticity of polymer/silica nanocomposites: an understanding from modulus decomposition, Rheologica Acta, 2016. 55(1): p. 37-50.
    113. H. E. Naguib, C. B. Park, and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams, Journal of Applied Polymer Science, 2004. 91(4): p. 2661-2668.
    114. X. Y. Chen, L. Wang, S. Nagamine, and M. Ohshima, Study oil/water separation property of PE foam and its improvement by in situ synthesis of zeolitic–imidazolate framework (ZIF‐8), Polymer Engineering and Science, 2019. 59(7): p. 1354-1361
    115. Y. Pang, Y. Cao, W. Zheng, and C. B. Park, A comprehensive review of cell structure variation and general rules for polymer microcellular foams, Chemical Engineering Journal, 2022. 430: p. 132662.
    116. D. Zhao, G. Wang, and M. Wang, Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology, Journal of Applied Polymer Science, 2018.
    117. Z. Xu, G. Wang, J. Zhao, A. Zhang, G. Dong, and G. Zhao, Anti-shrinkage, high-elastic, and strong thermoplastic polyester elastomer foams fabricated by microcellular foaming with CO2 and N2 as blowing agents, Journal of CO2 Utilization, 2022. 62: 102076.
    118. C. T. Yang and S.-T. Lee, Dimensional Stability Analysis of Foams Based on LDPE and Ethylene–Styrene Interpolymer Blends, Journal of Cellular Plastics, 2003. 39(1): p. 59-69.
    119. B. J. Briscoe and T. Savvas, Gas diffusion in dense poly(ethylene) foams, Advances in Polymer Technology, 1998. 17(2): p. 87-106.
    120. H. Zhang, Z. Fang, T. Liu, B. Li, H. Li, Z. Cao, G. Jin, L. Zhao, and Z. Xin, Dimensional Stability of LDPE Foams with CO2 + i-C4H10 Mixtures as Blowing Agent: Experimental and Numerical Simulation, Industrial & Engineering Chemistry Research, 2019. 58(29): p. 13154-13162.
    121. M. Härth, J. Kaschta, and D. W. Schubert, Shear and Elongational Flow Properties of Long-Chain Branched Poly (ethylene terephthalates) and Correlations to Their Molecular Structure, Macromolecules, 2014. 47(13): p. 4471-4478.
    122. M. Xu, Y. Chen, T. Liu, L. Zhao, and C. B. Park, Determination of modified polyamide 6's foaming windows by bubble growth simulations based on rheological measurements. Journal of Applied Polymer Science, 2019. 136(42): p. 48138.

    無法下載圖示 全文公開日期 2028/02/13 (校內網路)
    全文公開日期 2028/02/13 (校外網路)
    全文公開日期 2028/02/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE